

Improving Process Durability by Addressing Catalyst Deactivation During Upgrading of Biomass Pyrolysis Vapors

Mike Griffin tcbiomass 4/20/22

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

Overview

Forest Resources and Woody Wastes	133 Million Dry Tons/Yr	8 BGPY Hydrocarbon Fuel
---	----------------------------	-------------------------------

Target Outcome:

Accelerate pathways for the production of distillate-range fuels via catalytic pyrolysis and hydroprocessing

Sanderson, K., Nature, 2011, 474, S12-S14 2030 Estimates for DOE Billion Ton Report

Previous Research

Approaches to CFP have utilized several different catalysts, conditions, and reactor configurations

Co-fed hydrogen can increase carbon yield and reduce bio-oil oxygen content

This research was performed using cofed hydrogen at atmospheric pressure

Feedstocks and Reaction Conditions

<u>Clean Pine</u> Debarked stem-wood

Forest Residues

Feedstock	50/50 Forest Residues +
	Clean Pine
Composition	Dry wt%
Carbon	50.51
Hydrogen	5.99
Nitrogen	0.17
Sulfur	0.03
Oxygen	41.55
Ash	0.77
Modelled Cost	\$67/dry ton

Standard Conditions

Feedstock: Loblolly Pine + Forest Residues Pyrolysis Temperature: 500 °C Upgrading Temperature: 435 °C Catalyst Mass: 100 g WHSV: 1.4 g biomass/gcat*h Pressure: ~1 Bar Hydrogen Concentration: 83%

Catalyst Characterization

Catalyst and Synthesis	0.5%Pt/TiO ₂
Method	Strong Electrostatic
	Adsorption
Support	0.5 mm TiO ₂ Spheres
	(mixed phase)
Modelled Catalyst cost	\$203/kg
Support acidity, NH ₃ -TPD,	156
μmol/g	
Support surface area, m ² /g	54
Support pore volume,	0.37
cm³/g	
Support median pore	328
diameter, Å	
Catalyst CO binding site	19
density (µmol/g)	

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480 Griffin, M., et al. ACS Catal. 2016, 6, 2715-2727

SEM of 0.5 mm TiO₂ support

CFP Reaction Testing Results

Related Posters/Presentations

Kristiina lisa: *Hydrotreating to SAF, W-11:15am* **Kristiina lisa:** *Co-Hydrotreating with SRD, Th-2:00pm* Calvin Mukarakate: Advancements in CFP, Poster Abhijit Dutta: TEA/LCA, Poster

Post-Reaction Catalyst Characterization

Bed Segments: 16

Reaction Cycles: 13

Total TOS: 49 h

Total Biomass Fed: 7.4 kg Cululative B:C: 74

3000 ♦ AI Cr 2500 • S 🔺 Ni Concentration, ppm 2000 ◆Zn ●Fe • K 1500 1000 500 0 0 20 40 60 80 100 **Relative Bed Depth, %**

ICP-OES of Segmented Catalyst Bed

Dark field STEM-EDS From Leading Edge of Bed

Post Reaction Characterization Revealed Potassium Accumulation Concentrated at the Leading Edge of the Catalyst Bed

Preparation of Potassium-Doped Catalysts

Collaboration with Enabling Projects

Catalyst Deactivation Mitigation Advanced Catalyst Synthesis and Characterization

Comula	K lo	oading
Sample	ppm	µmol g _{cat.} -1
PT100K	168	4.3
РТ800К	774	19.8
РТ2000К	1613	41.4
РТ4000К	3418	87.6
РТ6000К	5757	118

A series of K-doped catalysts were prepared with KNO₃ to achieve K loadings between 100-6000 ppm. XRD and physisorption reveal no apparent impact of Kloading on crystallinity, surface area, or porosity

STEM EDS indicates K is well dispersed, consistent with post-reaction catalysts from experiments with whole biomass feedstocks

Lin, F., et al. ACS Catal. 2022, 12, 1, 465-480

Impact of Potassium on Metal Sites

Impact of Potassium on Acid Sites

All catalysts exhibited exclusively Lewis acidity

ChemCatBio

Pyridine TPD reveals a reduction in acid site density and peak desorption temperature with increasing potassium loading

Impact of K on Activity of TiO₂ Acid Sites

t-Butyl Alcohol Dehydration

Impact of K on Activity Near Pt-TiO₂ Interface

<u>0-2000 ppm K</u> Minimal impact from K addition

> 2000 ppm K Linear decrease in rate with K addition

Proposed Mechanism

Low Coverage: Potassium preferentially poisons strong acid sites on the support.

High Coverage: Potassium begins to impact bifunctional sites at the metal-support interface. Metal sites remain largely unaffected.

Mitigation Strategy

Sample	K loading	
	ppm	μmol g _{cat.} ⁻¹
PT100K	168	4.3
PT6000K	5757	118
PT6000K-W	337	8.6

An ex-situ water wash was demonstrated to be an effective regeneration procedure for removing potassium and restoring catalyst activity

Acknowledgements

Related Posters/Presentations

Kristiina lisa: Hydrotreating to SAF, W-11:15am Kristiina lisa: Co-Hydrotreating with SRD, Th-2:00pm

Fan Lin (PNNL) Yubing Lu (PNNL) Kinga Unocic (ORNL) Susan Habas (NREL) Josh Schaidle (NREL) Harry Meyer III (PNNL) Yong Wang (PNNL) Huamin Wang (PNNL) Calvin Mukarakate (NREL) Kristiina lisa (NREL) Matt Yung (NREL) Mark Nimlos (NREL) Alexander Rein (NREL)

Nolan Wilson (NREL) Anne Starace (NREL) Abhijit Dutta (NREL) Michael Talmadge (NREL) Kellene Orton (NREL) Scott Palmer (NREL) Carson Pierce (NREL) Renee Happs (NREL) Earl Christensen (NREL) Brittney Petel (NREL) Lisa Fouts (NREL) Chevenne Paeper (NREL)

Calvin Mukarakate: Advancements in CFP, Poster **Abhijit Dutta**: TEA/LCA, Poster

Trevor Smith (BETO) Jessie Glover (BETO)

Bioenergy Technologies Office

