

Northwest



### Co-Processing in Refineries of Thermal Liquefaction Products from Biomass and Waste

Huamin Wang Pacific Northwest National Laboratory

Kim Magrini National Renewable Energy Laboratory

> Zhenghua Li Los Alamos National Laboratory

> > April 20, 2022



PNNL is operated by Battelle for the U.S. Department of Energy



The International Conference on Thermochemical Conversion Science: Biomass & Municipal Solid Waste to RNG, Biofuels & Chemicals





### We can leverage existing refining infrastructures to **leverage billions of US\$**



Pacific

Northwest NATIONAL LABORATO



- Bio-oil/bio-crude co-processing not currently practiced by refiners
- Pilot scale work shows 1-10 wt% bio-oil feed is possible in FCC units
- Bench scale work shows potential of co-processing in HT/HC units with limited research on woody bio-oils and wastewater sludge HTL bio-oils

# An interdisciplinary and collaborative effort to de-risk co-processing in refinery



Pacific

Northwest

April 19: Stable Carbon Isotope Approach for Tracking Biogenic Carbon Distribution in Bio-oil/crude Co-processing with VGO, by Zhenghua Li, LANL

# Assessment



## A comprehensive study of co-processing in hydrotreating and hydrocracking

Pacific

Northwest





### High biogenic carbon incorporation demonstrated for the **CFP** bio-oil co-processing



- High incorporation of biogenic carbon in fuel products, consistent with standalone HT results, with minor impact to HT/HC chemistry
- Similar performance observed when co-processing CFP bio-oil with SR diesel
- Potential coke formation from CFP bio-oil is a big challenge

Pacific

Northwest

A. Dutta, et al. Ex Situ CFP 2020 State of Technology, https://doi.org/10.2172/1805204

84%

93%

| 12.2/100<br>CFP/VGO |
|---------------------|
| 39                  |
| <15                 |
| 49                  |
| 0.886               |
| 358                 |

## High biogenic carbon incorporation demonstrated for the HTL bio-crude co-processing



101.4 g organic

**Pacific** 

- Competition between heteroatom (S, N, O) removal is critical during co-processing in hydrotreating
- Demonstrated HT pretreatment to mitigate N issues of bio-crude and enable co-processing in mild HC C. Zhu,... H. Wang, Energy and Fuels, 2022, to be published

### 96% 97%

### 5.7/100 HTL/VGO 47 <15 93 0.881 358 7.3±0.1



### **Kinetic measurement of HDN/HDO/HDS of bio**crude/VGO guides catalyst selection and supports reactor model development



- Development of kinetic-based reactor model for co-processing is ongoing
  - Aspen HYSYS Refinery Models

C. Zhu,... H, Wang, Applied Catalysis B: Environmental, 2022, 307, 121197

![](_page_7_Figure_6.jpeg)

0.05 ž

0.02

0.01

# Mitigation of catalyst deactivation by co-processing suggested

**HDS** activity Surface area **Carbon content** K, Na, Ca, Fe content 120 15 10000 0.45 und/100 g cat h 0.35 0.35 0.35 0.4 wt.% 100 8000 carbon content, ppm 00 <sup>2</sup>80 000art area, 0.25 0.2 0.2 0.2 cont Surface a ganic 000 5 40 0.1 2000 20 0.05 2 5 4 5 2 2 3 4 2 5 2. Diesel only 1. Fresh 3. Diesel with raw bio-crude 4. Diesel with pretreated bio-crude 5. Diesel with pretreated bio-crude and catalyst guard bed

After ~300 h test

Bio-crude pretreatment and guard bed use mitigate catalyst deactivation 

April 21, 3:50: Coprocessing Biocrudes with Petroleum Gas Oil in Hydrotreating, by Huamin Wang, PNNL

Pacific

Northwest

C. Zhu,... H. Wang, Energy and Fuels, 2022, to be published

### Fouled catalyst after co-processing raw bio-crude

![](_page_8_Picture_6.jpeg)

Fe Ka1

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

100um

### Preliminary analysis showed co-processing has potential to reduce biomass conversion cost for biorefinery and benefit refinery by Northwest profitable feedstock and renewable carbon in fuel product

### Effect of various factors on the upgrading cost of wet waste HTL biocrude with co-processing

Pacific

### **Refinery Impact Analysis of Co-Processing Bio-Oil/Bio-crude and VGO at Mild Hydrocracking Unit HTL Biocrude**

|    | Scenarios             | cenarios Catalyst and Operating Assumptions Ungrading Capital Cost Assumptions |               |                     |           | ntions  | Ungradir         |            |           |
|----|-----------------------|--------------------------------------------------------------------------------|---------------|---------------------|-----------|---------|------------------|------------|-----------|
|    | Scenarios             | Catalyst                                                                       | Catalyst      | WHSV                | Change in | Feeding | $H_2$ Compressor | Wastewater | Cost      |
|    |                       | Life (yr)                                                                      | Price (\$/lb) | (Hr <sup>-1</sup> ) | Рн2 (%)   | system  | and PSA          | Treatment  | (\$/gge)* |
| 1  | Without Impacts       | 2                                                                              | 16.5          | 0.8                 | 0         | No      | No               | No         | 0.26      |
| 2  | Lower Catalyst Life   | 1.5                                                                            | 16.5          | 1                   | 0         | No      | No               | No         | 0.26      |
| 3  | Higher Catalyst Price | 2                                                                              | 32.9          | 1                   | 0         | No      | No               | No         | 0.27      |
| 4  | New Feed System       | 2                                                                              | 16.5          | 0.8                 | 0         | Yes     | No               | No         | 0.27      |
| 5  | Additional Waste      | 2                                                                              | 16.5          | 0.8                 | 0         | No      | No               | Yes        | 0.28      |
|    | Treatment             |                                                                                |               |                     |           |         |                  |            |           |
| 6  | 2, 4 & 5 Combined     | 1.5                                                                            | 16.5          | 1                   | 0         | Yes     | No               | Yes        | 0.28      |
| 7  | 3, 4 & 5 Combined     | 2                                                                              | 32.9          | 1                   | 0         | Yes     | No               | Yes        | 0.29      |
| 8  | Higher Partial H2     | 2                                                                              | 16.5          | 0.8                 | 10        | No      | Yes              | No         | 0.32      |
|    | Pressure              |                                                                                |               |                     |           |         |                  |            |           |
| 9  | 4, 5, 8 Combined      | 2                                                                              | 16.5          | 1                   | 10        | Yes     | Yes              | Yes        | 0.33      |
|    | with Higher WHSV      |                                                                                |               |                     |           |         |                  |            |           |
| 10 | Conservative (2, 3, 9 | 1.5                                                                            | 32.9          | 1                   | 10        | Yes     | Yes              | Yes        | 0.34      |
|    | Combined)             |                                                                                |               |                     |           |         |                  |            |           |
|    |                       |                                                                                |               |                     |           |         |                  |            |           |

\$0.26 - 0.34 /gge

![](_page_9_Figure_5.jpeg)

- Upgrading cost at a standalone bio-refinery = \$0.91/gge.
- Increase in operating severities and new capital investment will lead to higher biocrude upgrading cost to some extent
- design cases

![](_page_10_Picture_0.jpeg)

# FCC: Modified Catalysts Improve Co-Processing

![](_page_10_Figure_2.jpeg)

| Feed     | Catalyst          | %Bio-<br>based<br>Carbon<br>(%C <sub>bb</sub> )* | %C <sub>bb</sub><br>product/<br>%C <sub>bb</sub> feed | Wt%<br>Coke | Oxygenate<br>Breakthrough<br>(Mass% in<br>liquid) |
|----------|-------------------|--------------------------------------------------|-------------------------------------------------------|-------------|---------------------------------------------------|
| VGO      | E-Cat             | 0.0                                              | NA                                                    | 2.75        | NA                                                |
| VGO/CFPO | E-Cat             | 9.7                                              | 1.01                                                  | 1.09        | 6.03                                              |
| VGO/CFPO | E-Cat/MFI 5w% Mn  | 7.3                                              | 0.76                                                  | 0.83        | 5.19                                              |
| VGO/CFPO | E-Cat/MFI 5w% La  | 9.2                                              | 0.96                                                  | 0.62        | 4.90                                              |
| VGO/CFPO | E-Cat/MFI 5w% Ca  | 5.5                                              | 0.57                                                  | 0.68        | 5.39                                              |
| VGO/CFPO | E-Cat/MFI no-meso | 10.4                                             | 1.08                                                  | 2.8         | 4.25                                              |
| VGO/CFPO | E-Cat/MFI meso    | 8.8                                              | 0.91                                                  | 1.1         | 1.88                                              |
| VGO/CFPO | E-Cat/HZSM5       | 5.4                                              | 0.66                                                  | 0.23        | 1.80                                              |
| VGO/CFPO | E-Cat/HZSM        | 5.9                                              | 0.72                                                  | ND          | 2.33                                              |

La- and no mesoporosity-MFI catalysts:

- maximized biogenic C in product
- reduced coke
- reasonable oxygenate breakthrough
- to be tested at DCR scale

April 20, 3:20: Feedstock and Catalyst Impact on Bio-Oil Production and FCC Co-Processing to Fuels Feedstock and Catalyst Impact on Bio-Oil Production and FCC Co-Processing to Fuels, by Kim Magrini, NREL

# We can leverage existing refining infrastructures to leverage billions of US\$

![](_page_11_Figure_1.jpeg)

- High biogenic carbon incorporation by co-processing CFP bio-oils and bio-crudes in HT/HC and by co-processing CFP bio-oil in FCC
- For co-hydrotreating, competition of heteroatom removal is critical. Specifically, for HTL biocrude with high N content, HDN is the key to enable co-processing in hydrocracking
- Catalyst deactivation by co-processing can be mitigated

Pacific

Northwest

Co-processing can be beneficial to both biorefinery and refinery

![](_page_11_Picture_6.jpeg)

![](_page_12_Picture_0.jpeg)

# Acknowledgement

![](_page_12_Picture_2.jpeg)

Huamin Wang Miki Santosa Igor Kutnyakov Cheng Zhu Oliver Gutierrez Yuan Jiang **Charlie Doll** Andrew Plymale Tim Bays Corinne Drennan

![](_page_12_Picture_4.jpeg)

**Bob Baldwin** Earl Christensen Kristiina lisa Rebecca Jackson Calvin Mukarakate Jessica Olstad **Yves Parent Brady Peterson Glenn Powell Reinhard Seiser** Mike Sprague Anne Starace

![](_page_12_Picture_6.jpeg)

Zhenghua Li James Lee Douglas Ware Thomas Geeza Oleg Maltseve Jacob Helper

![](_page_12_Picture_8.jpeg)

**BIOENERGY TECHNOLOGIES OFFICE** 

SDI Program: Josh Messner, Jim Spaeth

April 20, 3:20: Feedstock and Catalyst Impact on Bio-Oil Production and FCC Co-Processing to Fuels Feedstock and Catalyst Impact on Bio-Oil Production and FCC Co-Processing to Fuels, by Kim Magrini, NREL

April 21, 3:50: Coprocessing Biocrudes with Petroleum Gas Oil in Hydrotreating, by Huamin Wang, PNNL

April 21, 4:10: Quantification of Biogenic Carbon in Fuel Blends through LS C14/C Measurement and Assessment, by James Lee, LANL

### Energy Efficiency & **Renewable Energy**