

Transforming **ENERGY**

Sustainable Aviation Fuel via Hydroprocessing of Catalytic Fast Pyrolysis Oil

Kristiina Iisa, Earl Christensen, Kellene Orton, Calvin Mukarakate, Michael B. Griffin, Kristin Smith, Katie Gaston, Luke Tuxworth, Mike J. Watson TCBiomass April 20th, 2022

Aviation as Source of Greenhouse Gas Emissions

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2019

Aviation 11% of transportation sector

Difficult to electrify

BETO Goals

- 3 billion gallons sustainable aviation fuel by 2030
- 35 billion gallons by 2050 (100% of projected need)
- >70% CO₂ emission reduction

Sustainable Aviation Fuel (SAF)

Jet Fuel

- Typically, C9-C18 carbon length
- Boiling point 125-290°C
- Composition varies

Group	wt%
n-Alkanes	13-26%
Isoalkanes	19-37%
Cycloalkanes	22-47%
Aromatics	14-21%

"Vision: Reduce aromatic content and increase isoalkanes and cycloalkanes"

Why Cycloalkanes?

Energy density key to jet fuel quality

- ASTM standard LHV >42.8 MJ/kg Aromatics limited to 25%
 - Non-desirable combustion characteristics: low energy density, high sooting
 - Needed to ensure seal swelling of nitrile O-rings

•	Cycloalkanes	may be	able to	provide	desired	performance
---	--------------	--------	---------	---------	---------	-------------

Compound	LHV, kJ/mol	Density, kg/m ³
Propylbenzene	41.4	862
Propylcyclohexane	43.7	793
Butylbenzene	41.7	860
Butylcyclohexane	43.6	818
Naphthalene	39.0	1020
Tetrahydronaphthalene	40.7	970
Decahydronaphthalene	42.5	896

Pyrolysis and Catalytic Pyrolysis Oils as Source of Cycloalkanes

- Lignin a source of phenolics
- Carbohydrates can form cyclic compounds
- Catalytic fast pyrolysis (CFP) can convert carbohydrate fraction to aromatics
- All can be hydrotreated to cycloalkanes

Experimental: Catalytic Fast Pyrolysis (CFP) Oils

- Two oils from different types of CFP processes
 - ZSM-5 oil prepared in NREL's pilot-scale reactor
 - Pt/TiO₂ oil prepared in NREL's bench-scale reactor

CFP Catalyst	Pt/TiO ₂	HZSM-5
Catalyst type	Bifunctional (metal- acid)	Zeolite (solid acid)
Upgrading reactor	Fixed bed	Riser
Feed	50% Pine/50% FR	Pine
Gas	N ₂	85% H ₂
Pyrolysis temperature, °C	500	500
Upgrading temperature, °C	400	550
Biomass:Catalyst, g/g	12:1	1:16
O, wt% daf	16%	18%
H:C, mol/mol	1.22	1.11
H:C _{eff} , mol/mol	0.92	0.75

Catalytic Fast Pyrolysis (CFP) Oils

- ZSM-5 oil contained more aromatic C-O and C-C
- Pt/TiO₂ oil richer in aliphatic C-C (longer side chains) and carbonyls

 ZSM-5 oil contained more phenols, furans, and naphthols/indenols & more non-GC detectable (high-boiling) material

Catalytic Fast Pyrolysis (CFP) Oils

 ZSM-5 oil contained more high-MW material ZSM-5 oil contained more phenols, furans, and naphthols/indenols & more non-GC detectable (high-boiling) material

Hydroprocessing in NREL's Continuous Hydrotreater

Hydroprocessing

- One-stage hydrotreating of CFP oil produces a substantial fraction of aromatics
- Two-stage process:
- Low-temperature hydrogenation: $C=O \rightarrow C-OH$

OH → OH

• High-temperature deoxygenation: C-OH \rightarrow C-H

Pressure	1800 psi/125 bar				
Catalyst	NiMoS _x /Al ₂ O ₃				
Temperature, °C	~200 & 385				
WHSV, h ⁻¹	0.2 & 0.2 (0.1 total)				

Carbon Distribution (ZSM-5)

Jet Fraction Properties

89-91% of products cycloalkanes (naphthenes)

- Majority of cycloalkanes 1-ring compounds
- ZSM-5 product contained more multirings due to its higher C-C coupling activity

Jet Fraction Properties

	Density, g/cm ³	LHV, MJ/kg	SIMDIS, 10%, °C	SIMDIS, FBP, °C	Flash Point, °C	Freeze Point, °C	C, wt%	H, wt%	N, wt%	O, wt%
ASTM D7566/ D4054	775-840	>42.8	130-160	250-330	>38	max -40	NA	NA	NA	<0.5
ZSM-5	834	43.0	158	281	50	<-70	86.5	13.6	0.0	<0.5
Pt/TiO ₂	833	43.0	158	286	47	<-70	86.5	13.8	0.0	<0.5

• Jet-range product met aviation fuel specifications with respect to density, heating value, volatility, freeze, and flash points

Challenges/Opportunities

- Overall conversion to SAF (ZSM-5)
 - CFP: C yield 28%
 - HT: C yield 92%
 - Distillation: C yield to SAF 41%
 - Overall C yield to SAF 11% (ZSM-5)
 - Overall C yield to SAF 13% (Pt/TiO₂)
- Co-products to reduce cost
- Increase yield in each step
 - Coupling, alkylation of products to reduce gasoline-range fraction
 - Increased cracking during HT (e.g., catalyst functionality, recycle of heavies)
- Process condition optimization
- Co-hydrotreating with petroleum streams

Acknowledgements

- U.S. DOE BETO for funding
- NREL
 - Kellene Orton, Andy Young, Alex Rein, Tyler Cary, Sean West
 - Calvin Mukarakate, Scott Palmer, Carson Pierce, Rick French
 - Kristin Smith, Katie Gaston, TCPDU personnel
 - Earl Christensen, Cameron Hays, Stephen Tifft
 - Mike Griffin, Josh Schaidle
- Johnson Matthey Technology Center
 - Luke Tuxworth
 - Mike Watson

Acknowledgements

Please visit our related presentations on CFP and hydrotreating

- Griffin et al.: Improving Process Durability by Addressing Catalyst Deactivation During Upgrading of Biomass Pyrolysis Vapors
 - Wednesday 1:30
- Iisa et al.: Co-hydrotreating of Catalytic Fast Pyrolysis Oils with Straight-Run Diesel
 Thursday 2:00
- Mukarakate et al.: Advancement of the Catalytic Fast Pyrolysis of Biomass Technology with Fixed-bed Reactor to Produce Renewable Fuels and Chemicals (poster)
- Dutta et al.: Techno-Economic Analysis of Fixed Bed Ex-Situ Catalytic Fast Pyrolysis Using a Pt/TiO2 Catalyst for the Production of Fuels and Oxygenated Co-Products (poster)
- Talmadge et al.: Comparative analysis of catalytic and non-catalytic pyrolysis oil co-processing by hydroprocessing and fluid catalytic cracking (poster)

Thank you!

www.nrel.gov

