

Behavior of the sulfur-containing salts during the hydrothermal liquefaction of black liquor

<u>Maximilian Wörner</u>, Lukas Werner, Ursel Hornung, Nicolaus Dahmen April 19th - 21st, 2022, tcbiomass 2022 in Denver

Outline

General information

- Black Liquor to Fuels (BL2F)
- Research on HTL of black liquor/ depolymerization of lignin

The role of sulfur containing salts

- Sulfur in different product phases
- Influence of S²⁻ concentration

Summary

Black Liquor to Fuels project (BL2F)

This project has received funding from the Horizon 2020 programme under the Grant Agreement n°88411

Part of European Union Horizon 2020 program

Production of drop-in biofuels from black liquor

Valorization/Recycling of every side stream

Direct use of black liquor

Black Liquor as feedstock

Alkaline solution (pH > 12)

Contains:

- Lignin
- Hemicellulose
- Cooking chemicals (e.g. Na₂S)

	C / wt. %	H / wt. %	N / wt. %	S / wt. %	O / wt. %	Na / wt. %	K / wt. %
dry matter (15 wt. %)	34	3,4	<0,1	4,7	38,8	17,7	1,3
lignin	60,3	5,7	<0,1	2,6	31	0,4	<1

Depolymerization of Lignin

Lu et al. 2017: Structural characterization of Lignin and its degradation products with spectroscopic methods

Only natural macro molecule with aromatic content

Products:

- Biocrude, gas solids ullet
- Aromatic compounds e.g. • Catechol, Guaiacol, ...

Experimental setup

- Batch experiments in micro autoclaves (V = 25 mL)
- Heating process in sand bath
- Investigated parameter ranges:
 T_R = 250 400 °C
 t_R = 0 30 min

Pressure: around 250 bar (via fill level)

Research on HTL of black liquor

The role of sulfur-containing salts

Investigations on behavior of sulfur-containing salts

Maximilian Wörner

Institute of Catalysis Research and Technology has received funding from the European Union Grant Number 884111

Sulfur in liquid and solid phase

- Sulfur in the solid phase plays only a minor role, less then 10 wt. % of sulfur
- Analysis of liquid phase
 - Total sulfur via ICP-AES
 - Inorganic sulfur via ion chromatography: oxidation of sulfur compounds to SO_4^{2-}
 - Qualification/quantification of some organo-sulfur compounds via GC-SCD
- Inorganic as well as organic sulfurcontent are decreasing with $T_{\rm R}$

Organo-sulfur compounds in liquid phase

Other compounds found: (methyl-)thiophene, ethyl mercaptane, methyl mercaptane

Sulfur in gas phase

- DMS in gas phase could be the reason for the decrease of total sulfur concentration in liquid phase
- Reaction pathway from literature describes connection between sulfide salts and DMS production

model black liquor based on feedstock characterization needed for confirmation

Model BL composition:

- salts: Na₂CO₃, K₂CO₃, Na₂SO₄, Na₂SO₃, Na₂S₂O₃, Na₂S
- KOH/NaOH for pH adjustments
- Lignin (extracted from BL)

all experiments done at $T_R = 375$ °C; $t_R = 10$ min

Analysis via GC-FID/WLD

- Clear correlation between sulfide concentration and DMS/H₂S production
- Increase of DMS concentration proves reaction pathway
- Shift from inorganic to organic sulfurcompounds

S²⁻ ions directly involved in HTL process

Catalytic/Inhibiting influence on depolymerization of lignin?

Observation of typical monomer yields & molecular weight

Catalytic/Inhibiting influence on depolymerization of lignin?

Observation of typical monomer yields & molecular weight

Slight acceleration of lignin depolymerization

- Organic as well as inorganic sulfur concentration is reduced with T_R
- most of the sulfur passes into the gas phase, see GC-MS results
- DMS main organo-sulfur compound in gas and liquid phase, H₂S plays minor role
- Correlation between DMS concentration in gas phase and S²⁻ concentration
- S²⁻ concentration affects lignin depolymerization

Project partners

Thank you!

Get in touch with the project:

Coordinator: Prof. Dr. Tero Joronen, Tampere University

Website: <u>www.bl2f.eu</u>

