On-Purpose Bio-LPG from multiple feedstocks
Dr Keith Simons, Chief Technology Officer
September 2024

FUTURIA FUELS

Our Energy Solutions

Our domestic, leisure, commercial, industrial and transportation customers benefit from using our cleaner energy sources.

Heating

LPG is used in off-grid homes with boilers and heating appliances, in offices and by farmers for heating greenhouses.

Transport

LPG is the world's most popular alternative automotive fuel. It's used in over 25 million vehicles around the globe.

Cooking

LPG provides a cleaner energy source for cooking than coal or heating oil, and it can be connected to any home cooking appliance.

Commercial

LPG is used by commercial customers to reduce their use of higher-carbon, polluting energy sources. In developing countries, LPG replaces hazardous solid fuel used for cooking stoves.

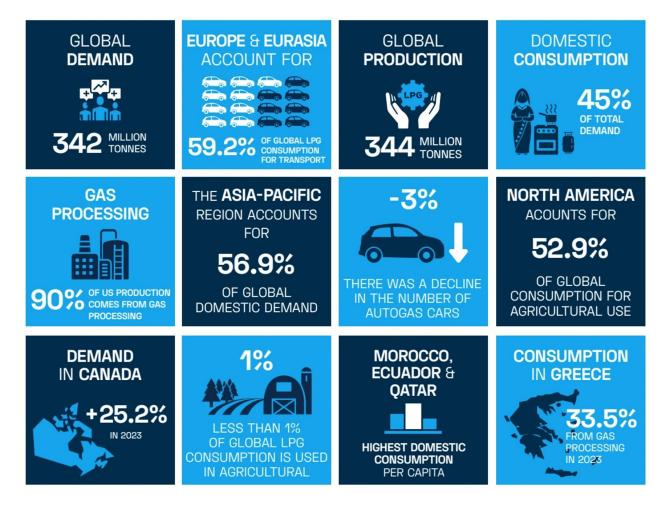
Industry

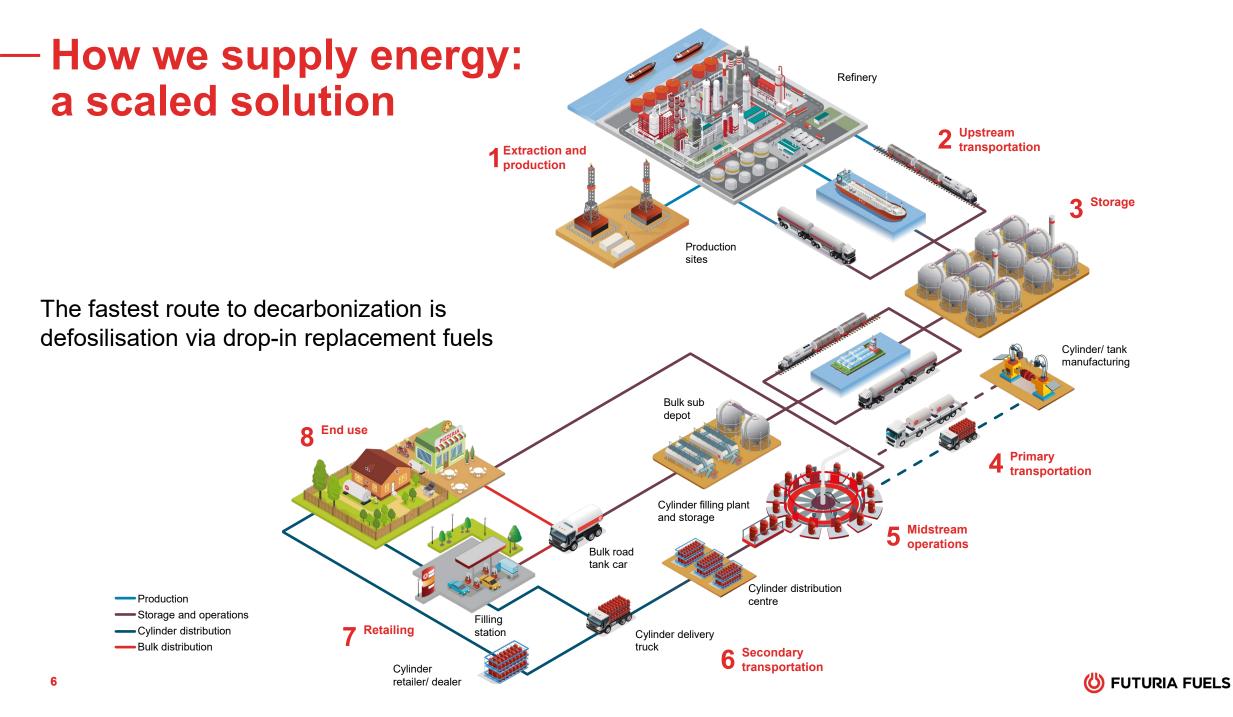
LPG is used for a wide range of industrial applications and processes, such as heating, cooling, drying, processing and food production.

Domestic

LPG provides energy for the home, as well as for a range of leisure activities from BBQ grills to caravanning and mobile catering.

Guidelines for LPG specification* vary worldwide


Country	Reported propane/butane mixture
Austria	from 100:0 to 80/20
Belgium	60:40 all year
Czech Republic	60:40 in winter 40:60 in summer
Denmark	70:30 from 1/09 to 31/05
Finland	95:5 from 1/09 to 31/05
France	100:0 to 60:40 from 1/11 to 31/03, 40:60 to 30:70 in summer
Germany	60:40 to 40:60 from 01/12 to 31/03, 10:90 to 0:100 in summer
Greece	20:80 all year
Hungary	40:60 all year
Ireland	100:0 all year
Brazil	Typically ranging from 30:70 to 50:50; contains variable amounts of propane, propylene, butylene, and/or other
USA	HD-5: Minimum 90% propane, maximum 5% propylene and other HD-10: Minimum 90% propane, maximum 10% propylene and other Commercial propane: Minimum 80% propane, maximum 20% propylene and other

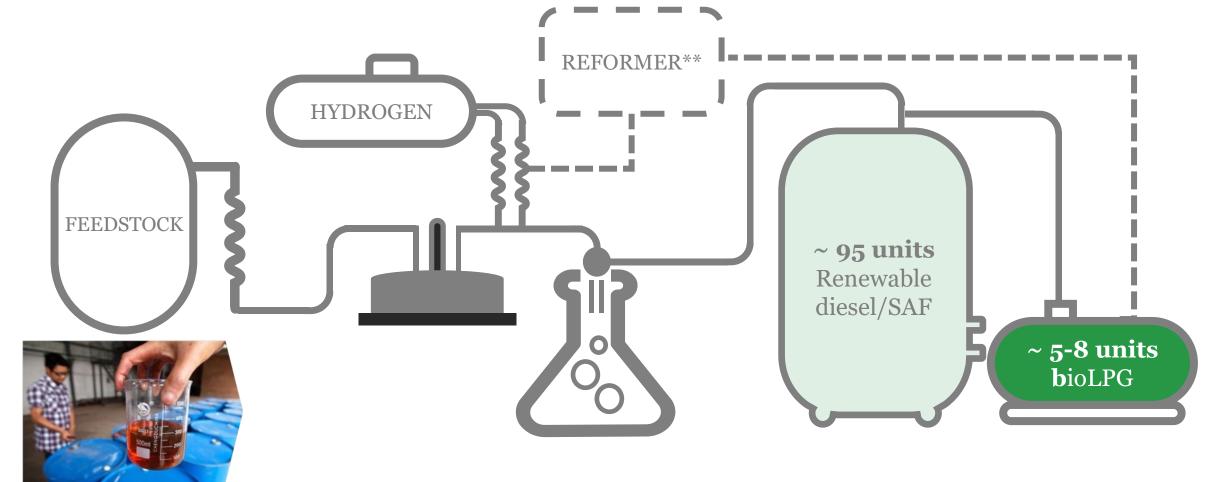


The global LPG market is a massive opportunity

- At 342 million MT/a, the global LPG market is comparable to aviation fuel
- Fossil propane / butane traditionally a byproduct from gas processing / crude refining
- WLGA membership targeting up to 50% substitution of the 2050 global non-chemical LPG demand
- BioLPG is currently a by-product (around 5% yield) from the HVO / HEFA process to produce bio-Diesel / SAF
- BioLPG often reformed to hydrogen to reduce the carbon intensity of Biodiesel / SAF

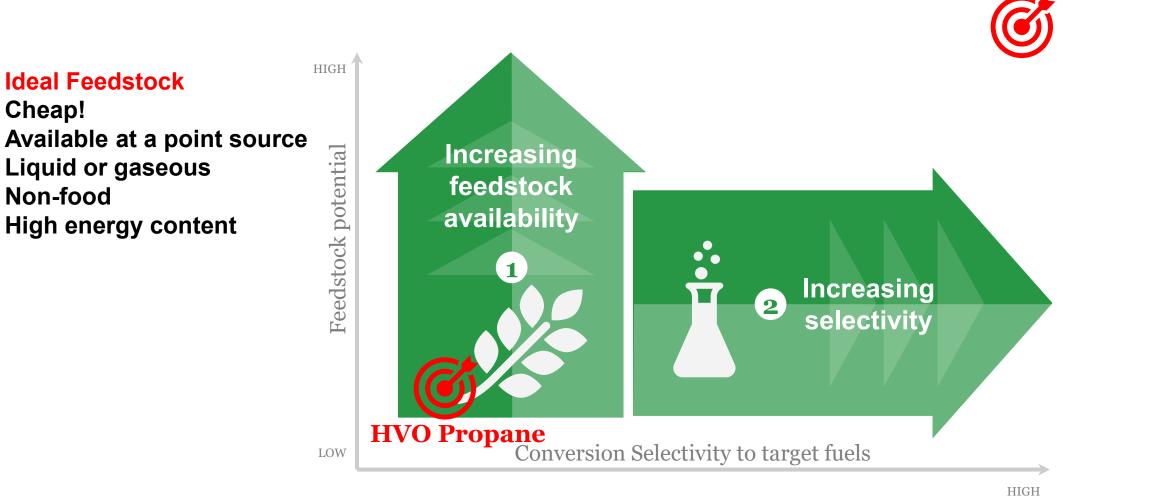
THE GLOBAL LPG INDUSTRY IN 2023




Proud to Pioneer Renewable Propane First load Neste Rotterdam March 2018

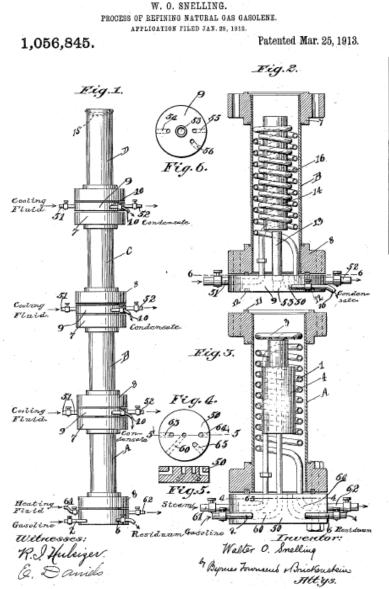
bioLPG

01


-BioLPG as a by-product from HVO/HEFA* renewable diesel/SAF production – but often not isolated

*Hydrotreated vegetable oil/hydrotreated Esters and Fatty Acids **bioLPG (and bioNaphtha) often converted into hydrogen

The technical challenges facing the renewable fuels sector – On-Purpose Production


A brief history of On-Purpose Production

On-purpose production of propane was first performed by Dr Walter O. Snelling in around 1910

The "natural gas gasolene" he was using to fuel his Model T Ford was evaporating too quickly

He subsequently invented a distillation technology to isolate LPG, selling the patent it to the company that ultimately became ConocoPhillips

Although the LPG industry went from strength to strength, very little new on-purpose production technology was developed during the next 100 years!

Around the World

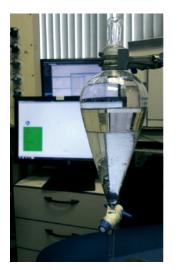
University of York

University of Ulster

Trans-methylation of ethylene

Microbial Production of Propane

...and more on the way...


GTI Energy

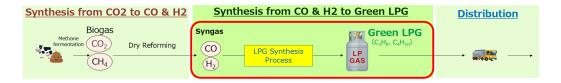
LanzaTech

Propeq

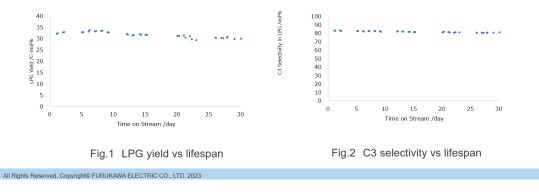
Ethanol to LPG Scale-up

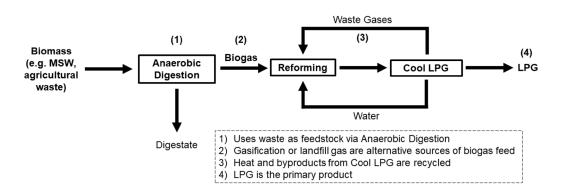
Novel Pathways to LPG

*Aromatics Benzene Toluene Ethyl-Benzene Para-Xylene 1-ethyl-3-methyl benzene 1,2,4 trimethyl benzene 1-methyl-2-isopropyl-benzene



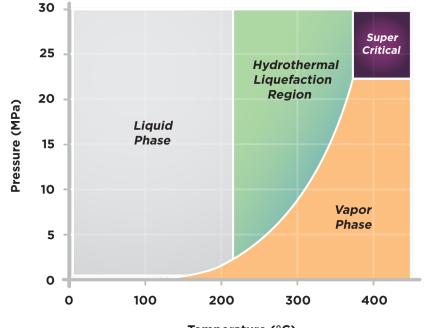
On-Purpose Route to renewable LPG from bioethanol (TRL 4)

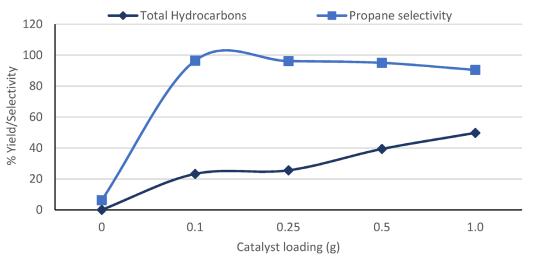

- Ethanol to Hydrocarbon route based on modified Methanol to Gasoline Process
- Catalyst screening has identified viable pathway from to produce LPG together with aromatics in a 2:1 ratio
- Deactivation by coking inhibited by using proprietary catalyst
- Working towards pilot-scale development from 2025
- 2026+ we anticipate commencement of development of a 10ktpa demonstration plant
- Mono-aromatics have potential to be qualified as ASTM SAF
- Hydrogen free!
- Ethanol market currently in rapid growth (1st generation market size in 2021 ca. 80M tonnes)


() FUTURIA FUELS

-On-Purpose Route to renewable propane from Anaerobic Digestion biogas

LPG yield over 30% & C3 selectivity over 80% are achieved.


BioLPG for Clean Cooking in Sub-Saharan Africa: Present and Future Feasibility of Technologies, Feedstocks, Enabling Conditions and Financing; Chen et al Energies 2021, 14(13), 3916



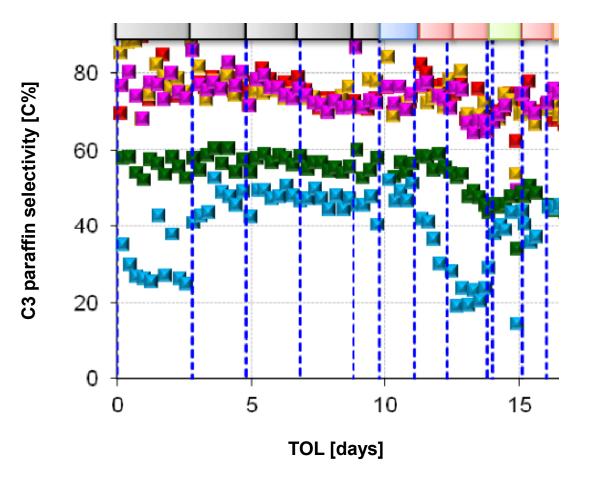
Temperature (°C)

- Ease of separation
- CO2 capture-ready (low-/negative-carbon)
- Similar results with n-butanol
- Hydrogen free!

Future Challenges

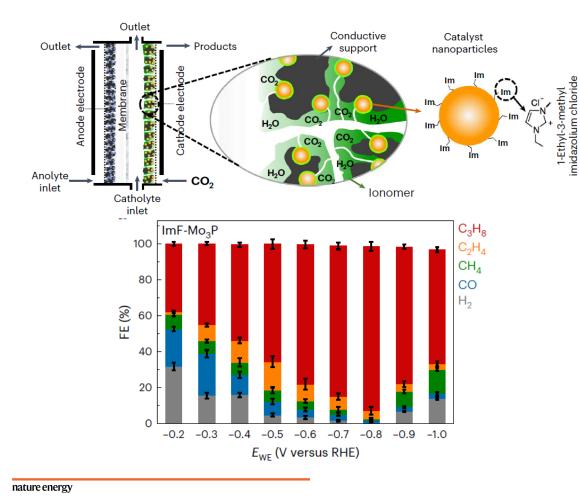
- Switch from a batch to a continuous process
- Process Scale-up
- Identify Earth-abundant catalysts
- Deployment of ABE process for feedstock

Parametric Study of Pt/C-Catalysed Hydrothermal Decarboxylation of Butyric Acid as a Potential Route for Biopropane Production, Razaq et al, Energies 2021, 14(11) 3316


Aston University

BIRMINGHAM UK

On-Purpose Route to renewable propane from CO2 and hydrogen – "e-Propane" (TRL 2)


- Colours represent distinct catalyst formulation
- The results are for single pass conversion
- Every jump indicates the results of a different experimental condition
- The reaction conditions are comparable to typical Fischer Tropsch conditions
- CO2 conversion is around 10 15 %
- C3 is mainly paraffins (upto 80% selectivity)
- As expected CH4 was also produced
- H2:CO2 ratio barely affects the selectivity
- Syngas also a viable feedstock
- Also being investigated by CO2MOS EU Project and others

Using H_2 and CO_2 as the feed (H_2 : $CO_2 \sim 3-4$)

Electrochemical reduction of CO2 to e-Propane (TRL2+)

https://doi.org/10.1038/s41560-023-01314-8

Fig. 9. Process of electrochemical synthesis of C_2 and C_3 hydrocarbons from CO_2 on pure Ag electrode in DEME-BF₄ containing $Ca(OH)_2$ aqueous solution at room temperature.

Saya Nozaki^a, Yuta Suzuki^b, Takuya Goto^{a,*}

Electrochimica Acta 493 (2024) 144431

Imidazolium-functionalized Mo_3P nanoparticles with an ionomer coating for electrocatalytic reduction of CO_2 to propane

Article

 Received: 1 March 2022
 Mohammadreza Esmaellirad^{0 15}, Zhen Jiang^{0 24}, Ahmad M. Harzandi¹,

 Accepted: 28 June 2023
 Alireza Kondori 0¹, Mahmoud Tamadoni Saray³, Carlo U. Segre 0⁴,

 Reza Shahbazian-Yassar 0³, Andrew M. Rappe 0² & Mohammad Asadi 0¹

- Conclusions

- A range of viable on-purpose routes to renewable propane are under advanced development and gradually becoming a main-stream R&D topic
- A significant opportunity for the industry to deliver a direct drop-in replacement fuel
- The (LPG) market size is comparable to aviation fuel (300ktpa)
- Engagement of LPG sector to collaborate with technology developers is a major opportunity
- The fastest route to decarbonisation is defosilisation
- Enough feedstock to replace existing and future market

For the latest developments come to Cape Town!

<u>Shiguang Li</u> from <u>GTI Energy</u> - Membrane Reactor for Production of Renewable Liquefied Petroleum Gas from CO2 and H2

Seyed Emad Hashemnezhad and Jude Onwudili from Aston University - Kinetics of hydrothermal reactions of n-butanol over Pt/Al2O3 catalyst for biopropane production

Miguel Ángel Sánchez García from Futuria Fuels - On-Purpose production of propane from a novel feedstock

<u>**Tiana Mathew</u>** from <u>**University of Cape Town**</u> - Use of non-PGM catalyst for the conversion of DME to Green Liquid Fuel Gas</u>

Luiz Daniel da Silva Neto from <u>Universidade Federal da Bahia</u> - Energy for all: perspective of BioDME production in Brazil

<u>Candace Eslick</u> from <u>University of Cape Town</u> - Process modelling and catalyst optimisation for renewable LPG synthesis

<u>Ricardo Lopes de Souza Júnior</u> from <u>Copa Energia</u> and <u>Federal University of Rio</u> <u>de Janeiro</u> - Catalytic conversion of glycerol into Renewable Liquid Gas (RLG)

<u>Dr.Yogesh Joshi</u> of <u>GREEN FUTURES, INC</u> - Oxygen Free Syngas Generation for Cheaper r-DME Production

Thomas Philip Starucka of Universidade Federal de Santa Catarina (UFSC) - Perspectives and technical analysis of a biorefinery plant for butyric acid production from soybean hulls

Ignacio Verdugo of Empresas Gasco and Universidad Tecnica Federico Santa Maria - Electric synthetic liquified gas (e-LG) combustion properties assessment

Masayuki Fukushima of **FURUKAWA ELECTRIC GROUP** - Green LPG from Biogas

2024/CAPE TOWN

Global Science Conference – GSC2024

22nd November 2024

CALL FOR PAPERS

It's not rocket science!

Thank you!

Keith Simons Chief Technology Officer

