Alexandra B. Jean, Joseph Schneider, Robert C. Brown

IOWA STATE UNIVERSITY **Department of Chemical and Biological Engineering Bioeconomy Institute**

Intensification of mass transfer in gas-liquid processes

TCBiomass 2024 September 10-12, 2024

 q cell $-h$

This material is based upon work supported by the National Science Foundation under Grant No. DGE-1828942 and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2336877. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

- k_La is controlled by the packing material or tray design, the relative gas and liquid velocities, and the tower design
- Liquid film surface presents a relatively small surface area-to-volume ratio for mass transfer further limited by lack of convective mass transfer enhancement
- Large pressure drop required across column required to promote liquid flow through packing and prevent flooding
- Mass transfer may be greatly influenced by packing efficiency or weeping from tray
- Both configurations have high capital costs and require substantial maintenance

Packed Bed and Trayed Contactors Typical Mass Transfer Rates: 0.007-0.02 s-1 • Gas flows over and through liquid films that form on bed packing or trays

-
- Gas contacts small droplets falling through the column
- k_La is controlled by droplet size and hydrodynamic characteristics
- Droplets posses large surface area-to-volume ratio, reducing mass transfer limitations
- Droplet manifold designed and operated to reduce jet formation and control droplet size
- Vertical droplet fall pattern reduces inter-droplet and wall interactions

Stagnant Internal Oscillation Internal **Circulation** Previous work suggests that mass transfer in singular falling droplets most closely agrees with predictions of the internal circulation and oscillation models.

> Mean volumetric transfer rate within each slice: $\dot m(d,z)\rangle = k_L(d,z) a(d) \big({\cal C}^* - {\cal C}(z) \big)$

CONVENTIONAL: BULK GAS-TO-DISPERSED LIQUID EXCHANGE

Vertical Droplet Array Towers Estimated Mass Transfer Rates: 0.01-3.0 s-1

Direct air capture methods may be very energy intensive due to high heat or pumping requirements. Using a droplet tower to adsorb CO_2 from ambient air and a vacuum flash column to regenerate the aqueous sorbent 医皮质性皮肤炎 医血 Stripped Air ---------may reduce the energy requirements of direct air capture by up to 90%. .

Hypothesis: Utilizing a vertical droplet tower will enhance mass transfer compared to other gas-liquid contacting methods and facilitate prediction of tower mass transfer performance

INNOVATION: BULK GAS-TO-ATOMIZED LIQUID (BGAL) EXCHANGE

- $C_i^* =$ P_i [atm] $H(T$ atm * L \overline{mol} $H(T) = H_{ref} \exp$ $-\Delta H_{sol}$ \overline{R} 1 \overline{T} − 1 T_{ref}
	- The mass transfer rate constant, $k_L a$, is controlled by the gas flowrate, bubble size, and agitation rate
- The small surface area of contact between the gas bubbles and liquid solvent compared to the large volume of liquid severely limits mass transfer
- High energy inputs are required to induce good convective mass transfer through agitation **Bubble Contactors**

Amokrane et al. (1994)

Oscillating Model Angelo et al. (1966)

The droplet diameter probability distribution is determined by high-speed imaging:

The droplet column is modeled under plug flow assumptions using the droplet diameter distribution and residence time of each droplet within each slice.

 $Z + \Delta Z$ $C(z) = C^* - (C^* - C(z - \Delta z))e^{-k_L a \tau_{res}(z)}$ Mean concentration within each slice: where C^* is saturation concentration.

To determine the theoretical maximum cell concentration maintained in the bioreactor under continuous operation, the oxygen transfer rate (OTR) and oxygen uptake rate (OUR) can be utilized:

 $OTR = k_L a (C^* - C_{O_2})$ $\begin{aligned} 0 \quad U R = Q_{O_2} X \end{aligned}$

At steady state conditions: $OTR = OUR$

Ienczak, J.L. *et al.* (2011) found a maximum specific oxygen uptake rate, Q_{O_2} , for *Cupriavidus necator* of 30 $mg O_2$.

Using an oscillation model, the theoretical cell concentration, X, at steady state increases by 7-fold by utilizing the droplet tower to enhance mass transfer compared to a bubbled gas fermenter:

GAS FERMENTATION FOR PRODUCTION OF SINGLE CELL PROTEIN

DIRECT AIR CAPTURE OF GREENHOUSE GASES

Gas Out

Gas In

• Small bubbles dispersed in large volumes of liquid gradually dissolve up to the saturation point, according to Henry's

Law:

Typical Mass Transfer Rates: 0.005-0.05 s-1

CONVENTIONAL: BULK LIQUID-TO-ATOMIZED GAS EXCHANGE