Advanced BiCRS Process for H₂ Production with High-Negative Carbon Efficiency – BioVac H₂[™]

Dennis Leppin, P.E., Zach El Zahab PhD, and Asmara Soomro, P.E. – GTI Energy

GTI ENERGY

Flue Gas

Steam Generato

Motivation and Vision

Technical Solution

BioVac-H2 Block Flow Diagram

- BiCRS is a key element of the carbon removal strategy. BiCRS approaches have been evaluated and found to offer a significant potential to meet CO_2 removal (LLNL Roads to Removal, Chapter 6) targets
- Higher C capture and sequestration and higher C negativity are important aspects of a BiCRS process. The BioVac H₂ approach has exceptional performance on this metric along with favorable economics based on early TEA work.

Benefits and Value

 Removal of CO₂ from the atmosphere while producing energy or chemicals is an important part of global climate strategy.

- Key features/process
 - Feedstock Pre-processing*
 GTI Energy's R-Gas Gasification of Torrefied/Pulverized Ag Wastes*
 Water Gas Shift
 - GTI Energy/Uhde GmbH Morphysorb*
 AGR solvent CO₂ Removal and Capture*
 Oxy-torrefaction*
 - Pressure Swing Absorption
 Power Block H₂ Combustion/Turbine
 CO₂ Compression
- *Developmental Technology

Feedstock Pre-processing

- Corn Stove (CS) bales are deconstructed and then pelletized
- The CS pellet torrefaction then go through a torrefaction process at ~245 degC temperature and a residence time of about 30 minutes until the pellet color turns into 'dark brown' inside and out with very minimal fibrous materials.
- brown' inside-and-out with very minimal fibrous materials.
 The feedstock mass loss through the torrefaction process ranges between 10% and 20%.
- The torrefied pellets are then pulverized to achieve a particle size distribution with a median size of about 150 micron.

Torrefaction/ Feed Pre-processing

O2 to Oxy

Enables use of various biomass feedstocks with minimal feeding and heavy liquids issues

BioVac-H₂

Enables use of entrained flow gasifier with high efficiency, low footprint

- This technology can significantly reduce the carbon emissions of BiCRS processes
- Gasification of biomass to H₂ using waste biomass is a large contributor to the low-cost tier of options for CO₂ removal to meet targets
- BiCRS can contribute 350 million tons: per year of needed CO₂ removal

CO₂ Capture Supply Curve

Acid Gas Removal – Morphysorb[®] Process

- Solvent process to remove mainly H₂S and CO₂ from scrubbed syngas.
- Regeneration of rich solvent via flashing with mild heating (if needed.) Lower energy than amine processes.
- Physical solvent works best at pressure, moderate temperatures (but >50 °F), and in the absence of heavy hydrocarbons
- Tested and developed with natural gas, commercialized for bulk removal of H₂S and

Oxy-torrefaction

- Torrefaction off-gases combusted at high-temperature in an oxy-combustion system
- Enables additional CO₂ capture without expensive, massive CO₂ removal from flue gas process

Gas Turbine

 Efficient power production with only water vapor emissions. 100% H₂ capable turbines to be available from Siemens and GE around 2030.

High Efficiency AGR Solvent

High CO2 Recovery, Low regeneration energy (solvent flashing only)

Key Process Performance Ratios

*Combined O₂ to Gasification and Oxy-torrefaction

Business Concept

 Develop new BiCRS process, BioVac-H2 using advanced emerging processes CO₂ (~40 - 50 vol% in total) at ~1,000 psi at 450 MMSCFD.

- Tested in GTI Energy pilot unit (1 MMSCFD) with syngas from fluidized bed gasification of 20 TPD wood in the U-GAS process at ~900 psig.
- Excellent Results in Biomass syngas service (Ref. Acid Gas and Trace Contaminant Removal from Synthesis Gas produced by fluidized bed gasification of wood using the Morphysorb® Process in the GTI Flex Fuel Pilot Plant, D. Leppin, TCBiomass2013, Chicago IL, April 2013)

Conclusions and Next Steps

The proposed conceptual process, BioVacH2[™], uses advanced biomass feed processing, gasification (R-Gas[™]), and acid gas treating technology (Morphysorb[®]) along with state-of-the art CO₂ compression, oxy-torrefaction and power generation equipment (H₂-capable gas turbines, when available) to convert suitable biomass feedstocks to H₂ or optionally carbon-negative power. Very high pre-combustion CO₂ recovery indicates a very high negative C result for this process.

- Pathway to net-negative H₂ at \$1/kg is <u>REALIZABLE</u> as long as there is a carbon offset market that pays ~\$90/tonne for CO₂ removal.
- GTI Energy will endeavor to continue development of the process depending on available funding. GTI has many of the pilot plant scale equipment modules needed for an integrated test of the concept if the evaluation going forward continues to be favorable.

Feed: Corn Stover **Additional CO₂ generated from overall process from biomass feed transportation, construction activities – LCA not performed at this time.

TEA

CO2 removal cost (\$/tonne)	Ś	88.95
Total operation cost		\$12,200,415
maintenance etc.)		\$11,451,315
Kenewable Power Cost (6 cents/KWh)	Ş	8, 798, 544
Chemicals, Catalyst etc.	~	\$2,000,000
Hydrogen Revenue (\$1/kg)	\$	(30,763,339)
Biomass (\$70/tonne delivered to site)		\$20,713,896
Operating Costs		
Total Plant cost (TPC)		\$422,565,731
Contingency (15%)		\$55,117,269
commissioning etc.)		\$40,860,035
Indirect Costs (EPCM, spare parts,	¢40.900.00	¢40.000.005
Other direct cost (balance of plant)		\$34,731,030
CO2 Compressor		\$38,000,000
WGS + CO2 Capture		\$60,000,000
PSA	\$	6,266,482
Gasification Island	,	\$71,337,088
Power Generation	Ś	7,000,000
Biomass Handling and Torrefaction		\$52,097,128
ASU		\$57,156,697
Bare Erected Cost (BEC):	Ś	291.857.396

