IOWA STATE UNIVERSITY **Department of Mechanical Engineering**

Moham Ed Abdur Razzaq, Xianglan Bai

Oxygenated Carbon Nano Onion (CNO) Fabrication from Biomass for Ultra-high Strength Polylactic Acid (PLA) Composite. Introduction **PLA/CNO** Composite Properties **Results and Discussion**

Acknowledgements: Iowa Economic Development Authority funded this work.

Fig 3: TEM images; a) OL-CNO; b) KL-CNO; c) BC-CNO

 Table 1. XRD and Raman results

		XRD			Raman	
Sample	d ₀₀₂ (nm)	$L_{c}(nm)$	L _a (nm)	A_D/A_G	I_D/I_G	
OL-CNO	0.3472	3.57	14.45	0.6	0.52	
KL-CNO	0.3540	2.49	7.95	0.67	0.51	
BC-CNO	0.3545	3.62	12.39	0.77	0.72	

Fig 4: XPS survey scan

 Table 2.
 Deconvoluted C1s peak

	sp ² carbon	-C-O	-C=O	O-C=O	π - π^*
Sample	(%)	(%)	(%)	(%)	(%)
OL-CNO	86.52	8.00	2.98	1.53	0.98
KL-CNO	86.86	7.82	2.32	1.64	1.36
BC-CNO	90.24	7.19	1.20	0.83	0.54

> Carbon nano-onion structure was confirmed by TEM images. \succ The d₀₀₂ values of CNO were greater than the d₀₀₂ of the conventional Bernal (AB-stacked) graphite (0.337 nm) confirming the formation of turbostratic graphitic CNO. \blacktriangleright Multilayered stacking of the ordered sp² carbon network was confirmed by the presence of 2D band in Raman spectra. \succ CNOs contain reactive oxygen-functional groups.

> The nanocrystal size and functional groups of CNO are tunable.

tcbiomass 2024

0.42

0.45

0.46

1400

 π - π^*

Material	T_{g} (°C)	T_{cc} (°C)	T_m (°C)	$T_d(^{\circ}C)$	T _{max} (°C)
PLA	57.1	100.8	171.5	319.0	358.0
OL-CNO	63.4	106.9	179.2	332.7	370.2

Effects of BCNO filler on PLA properties:

- > Adding 0.5% CNO resulted in significant increases in tensile and 3-point flexural properties of PLA.
- ➤ Tensile strength and modulus of PLA increased by 43.9% and 128.4%, respectively, with 0.5% OL-CNO.
- \succ Flexural strength and modulus increased by 17.2% and 69.6%, respectively, compared to neat PLA.
- Flexural strength and flexural modulus of PLA/OL-CNO were 20.9% and 69.9% higher than that of PLA-graphene nanoplatelets (GNP).
- \blacktriangleright Impact strength of the PLA/CNO was increased by 60.41% compared to the pure PLA.
- > Thermal decomposition temperature and maximum decomposition temperature of the PLA/CNO composite was improved by 13 $^{\circ}$ C and 12 $^{\circ}$ C respectively compared to pure PLA.
- > Glass transition temperature and melting temperature was increased by 6.3° C and 6.1° C respectively.

Published: *J. of Cleaner Production*, ., 2023, V 428, 139361