
FUNDAMENTAL AND SCIENTIFIC 
UNDERSTANDING OF BIOMASS (and MSW / 
PLASTICS) PROPERTIES FOR GASIFICATION

JC van Dyk (presenter), T Eastland, Zach El Zahab 
GTI Energy, jvandyk@gti.energy 

10-13 September 2024

mailto:jvandyk@gti.energy


ACKOWLEDGEMENT TO PROJECT PARTNERS 
AND SPONSORS

DE-FE0032176

DE-FE0032176
• Feedstock sourcing (biomass, MSW, 

plastics)
• Kinetics data through TGA and bench scale
• Bubbling bed  MBU concept testing
• Syngas composition and temperature limits 
• Temperature optimization to maintain 

below fouling
• Cost implications

GTI Internal R&D Project about 
Tar Management:
• Tar characterization
• Destructuring mechanism
• Influence of temperature and 

bed material
DE-FE0032176



1. Standard ISO or ASTM test methods are developed for coal, lignite, etc. specifically and 
statistically valid on properties within these ranks and variation. The need exists to 
develop procedures for standardized analyses on biomass, plastics and MSW.

2. Biomass, MSW and plastics are behaving similar with regards to conversion trends and 
in texture.  

3. Some important factors affecting gasification are:

1. CO2 Gasification Reactivity and Fixed Carbon content (influence on gasification)

2. Release of volatiles (tar and oil formation) and reduction parameters
The production of tar during gasification is one of the major problems affecting utilization efficiency, yields and CAPEX

Tar can also condense at reduced temperatures causing process related problems like clogging or blockage 

Tar composition from some feedstocks may also be acidic and not suitable for downstream processing or blending

3. Inorganic speciation, slagging and fouling

PROBLEM STATEMENT AND PURPOSE OF STUDY



COMPOSITION OF ORIGINAL MATERIAL

Sample Identification MSW PLASTIC 
WASTE

BIOMASS

Bulk density (Kg/m³) (as received) 183.25 145.75 228.25
Proximate Analysis % Inherent moisture content (air-dried) 1.5 0.9 5.4

% Ash content (air-dried) 12.7 7.8 1.0
% Ash content (dry basis) 12.9 7.9 1.0
% Volatile  Matter  (air-dried) 81.1 87.2 81.1
% Volatile  Matter (dry basis) 82.3 88.0 85.6
%Fixed carbon   (by calculation)    (air-dried) 4.7 4.1 12.5

Ash Flow Temperature Initial Deformation Temperature oC 1120 1140 1190
Hemispherical Temperature oC 1180 1160 1250
Flow Temperature oC 1210 1190 1310

Al2O3 % 10.1 10.4 31.9
SiO2 % 48.2 45.8 48.6
CaO % 17.6 20.6 5.1
MgO % 1.9 4.3 2.0
Na2O % 7.2 5.7 0.2
Fe2O3 % 8.6 5.6 3.6
K2O % 0.4 0.6 0.6
SO3 % 0.5 0.9 4.7
P2O5 % 0.4 0.3 0.9
TiO2 % 2.3 0.0 1.5
MnO % 0.2 0.1 0.0
LOI 2.6 5.7 0.9

COAL

10-30(mass%)

30-60(mass %)



TGA analysis @ 10oC/min

TGA conducted under inert (N2) atmosphere

Coal weight loss is distributed over a larger 
temperature range (400-850°C) compared to 
biomass (200-400°C)

Biomass devolatilization rate nearly one order of 
magnitude greater than coal (-1.2-1.8 x 103 s-1 

compared to  -3x104 s-1)

Biomass peaks can be attributed to lignocellulosic 
content  i.e. hemicellulose, cellulose and lignin

Coal peaks can be attributed  to “regions of 
reactivity”

CO2 Gasification Reactivity 



Previous studies showed that pyrolysis kinetic parameters obtained 
under atmospheric conditions are also applicable to 
pressurized conditions of up to 40 bars

Blends were analysed at 5, 10, and 50°C/min heating rates while 
single fuel samples were analysed at 5, 10, 20, 30, 40, 50 and 
150°C/min

Nitrogen was used as the purge gas, and was set to a flow rate of 
150mL/min to ensure an inert atmosphere 

Sample masses of between 5-25 mg and particle size of less than 
212μm limited the occurrence of secondary vapour–solid 
interactions, and the mass and heat transfer effects

CO2 Gasification Reactivity 



1. Volatiles from Biomass, MSW and plastics are released at both a lower 
temperature and a faster rate compared to coal. 

2. After the release of volatiles, the temperature inside the gasification zone has to 
be maintained in an endothermic environment controlled by the fixed carbon 
content.

3. The problem with MSW and plastics, and to a lesser extent on biomass, are that 
the fixed carbon content is so low, that the temperature and heat inside the 
reactor are not maintained and a heat / energy sink observed.

CO2 Gasification Reactivity 



PROXIMATE ANALYSES ULTIMATE ANALYSES TO SYNGAS TO PYR PRODUCTS (ALL) TO ASH PYRGAS COMP (tar excl) PYRGAS ALL
H2O 10 H2O 10 H2O 0 H2O 10 H2O 0 H2O 10 64.8
Mineral matter 11.1 Mineral matter 11.1 Mineral matter 0.0111 Mineral matter 0 Mineral matter 11.09 CH4 1.7 See file
Volatile matter 71.1 C 44.5 C in FC Matrix 7.8 C 36.7 C 0.0 H2 2.2
Fixed Carbon 7.8 H 6.4 H in FC Matrix 1.1 H 5.3 H 0 CO2 0.5

100 N 0.8 N in FC Matrix 0.1 N 0.7 N 0 CO 2.4
S 0.4 S in FC Matrix 0.1 S 0.3 S 0.0 C2H6 0.1
O 26.5 O in FC Matrix 4.6 O 21.9 O 0 >C2s others 5.0

99.7 C from vol gas 6.2 CHNSO TOTAL 64.8
H from vol gas 0.9

PROXIMATE ANALYSES VOLATILE MATTER N from vol gas 0.1
H2O 10 H2O 10 S from vol gas 0.1
Mineral matter 11.1 Mineral matter 11.1 O from vol gas 3.7
Volatile matter 71.1 Tar 47.0 C from tar cracking 0.0
Fixed Carbon 7.8 Volatile H2O 11.9 H from tar cracking 0.0

100 Gas 11.9 N from tar cracking 0.0
Fixed Carbon 7.8 S from tar cracking 0.0

99.7 O from tar cracking 0.0

TAR CRACKING 0 % volatile matter TOTAL
CARBON CONVERSION 100 % of fixed carbon 24.7 74.8 11.1 99.7
SULPHUR TO ASH 10 % of total sulphur

EXAMPLE OF DETAIL UNDERSTANDING OF FEEDSTOCK 
REQUIRED (Lessons from 23302)

BIOMASSPLASTIC WASTEMSWSample Identification

228.25145.75183.25(as received)Bulk density (Kg/m³)

5.40.91.5(air-dried)% Inherent moisture content Proximate Analysis

1.07.812.7(air-dried)% Ash content 
1.07.912.9(dry basis)% Ash content 
81.187.281.1(air-dried)% Volatile  Matter  
85.688.082.3(dry basis)% Volatile  Matter 
12.54.14.7(air-dried)%Fixed carbon   (by calculation)    

119011401120oCInitial Deformation Temperature

125011601180oCHemispherical Temperature
131011901210oCFlow Temperature

31.910.410.1%Al2O3
48.645.848.2%SiO2
5.120.617.6%CaO
2.04.31.9%MgO
0.25.77.2%Na2O
3.65.68.6%Fe2O3
0.60.60.4%K2O
4.70.90.5%SO3
0.90.30.4%P2O5
1.50.02.3%TiO2
0.00.10.2%MnO
0.95.72.6LOI

WHY DETAIL UNDERSTANDING OF FEEDSTOCK IS NEEDED:
1. FIXED CARBON plays a role in both gasification (syngas production) and kinetics / reactivity.
2. TOTAL C speciation reflects C  tar and C  syngas…..ultimate analyses not the full picture

• FTA REQUIRE from specialized labs (i.e. NWU and Sasol)
3. Low FIXED CARBON caused temperature run-away after devolatilization and 2-step operating is required
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MODIFICATIONS IN OPERATING CONDITIONS TO OBTAIN STABLE GASIFICATION

Flame T5
Flame T6
Air flow

Ignition

~ Constant temperature

STABLE GASIFICATION AND 
SYNGAS PRODUCTION ARE 
ACHIEVED WITH ADJUSTED 
OPERATING CONDITIONS 
ON BOTH MSW AND 
PLASTICS

STABLE OPERATION ACHIEVED



WHAT IS TAR CRACKING?
(Thermal versus chemical – and the combination)

THERMAL = 
• cutting the carbon molecules (1 to >1)
• Smaller C-chains
• C6 stable
• Gas release



WHAT IS TAR CRACKING?

“K or Ca as an example, as a cheap and naturally abundant material, has been demonstrated as an effective 
catalyst for the catalytic cracking of tar. The basic sites of CaO can enhance the cleavage of C–H, Caryl-C and 
aromatic C -C bonds of tar molecules to form active carbon and help for H2O dissociation to form OH∗ and 
H∗ free radicals, the OH∗ radical reacts with active carbon to generate other oxygenate intermediates, and 
are subsequently decomposed to produce gaseous products and remove coke. 

Bin Li, Christian Fabrice Magoua Mbeugang, Yong Huang, Dongjing Liu, Qian Wang, Shu Zhang,
A review of CaO based catalysts for tar removal during biomass gasification,
Energy,
Volume 244, Part B,
2022

CATALYTIC = 
• Forming free radicals
• Weakening of bonds
• Easier to break chain and C6’s
• Higher gas-make



Modified Fisher Assay analysis
 Pyrolysis in Argon or N2
 Wt. % of char, tar, gas and water
 Temperatures up to 1000 °C
 Max P = 30 bar
 Collect products for further 

analyses/tests
 50 g sample per test
Examples of studies:
• Influence of additives/mineral matter on coal 

pyrolysis productsa,b 
• Possible catalysts to promote tar cracking during 

pyrolysis (Al2O3 ,K2CO3 , potassium acetate 
(CH3COOK), and KOH)b

• Influence of temperature (520, 720 and 920 °C) 
and coal rank (ranging from lignite B to 
bituminous C) on pyrolysis product yields. Tars 
characterisedc

a Bean, N. C., Bunt, J. R., Strydom, C. A., Neomagus, H. W. J. P., Van Niekerk, D., & Hattingh, B. B. (2018). Influence of additives on the devolatilization product yield of typical South African coals, and effect on tar composition. Journal of the Southern 
African Institute of Mining and Metallurgy, 118(4), 395-407.
b Roets, L., Bunt, J. R., Neomagus, H. W., Strydom, C. A., & Van Niekerk, D. (2016). The effect of added minerals on the pyrolysis products derived from a vitrinite-rich demineralised South African coal. Journal of analytical and applied pyrolysis, 121, 
41-49.
c Pretorius, G. N., Bunt, J. R., Gräbner, M., Neomagus, H., Waanders, F. B., Everson, R. C., & Strydom, C. A. (2017). Evaluation and prediction of slow pyrolysis products derived from coals of different rank. Journal of Analytical and Applied 
Pyrolysis, 128, 156-167.



1. The tar samples from the blends with higher percentages biomass produced more phenolic 
type compounds than the tar from the blends with the higher amounts of paper and plastic 
waste.  The tar from the blends with the highest amounts of MSW contained hydrocarbon 
compounds as the main group of compounds that formed. The main crude oil fraction of the 
tar samples was heavy vacuum oil. See below 

2. Char from the paper waste showed the highest gasification reactivity in comparison to the 
chars formed from the biomass and plastic waste materials.  Dolomite increases the 
gasification reactivity more than Brown Alumina does.

SUMMARY OF NORTH-WEST UNIVERSITY 
STUDY

Sample ID / crude fractions Kerosene Light 
gas oil

Heavy 
gas oil

Light 
vacuum 

oil

Heavy 
vacuum 

oil
45Bio45MSW10Dol (Run10) 19 26 7 10 37
45Bio22.5MSW22.5Plas10Dol-1 (Run12) 28 30 6 6 31
45Bio22.5MSW22.5Plas10Dol-2 (Run15) 25 33 5 6 31
45Bio22.5MSW22.5Plas10BAl (Run18) 27 32 5 6 29
100MSW (Run20) 14 26 10 10 41
10Bio10MSW80Dol (Run22) 15 23 21 9 32
10Bio10Plas80Dol (Run23) 18 26 17 11 28
10Bio5MSW5Plas80Dol (Run23) 17 28 13 9 33
45Bio45Plas10Dol (Run25) 26 32 6 8 29
90Bio10Dol (Run26) 32 21 8 11 28
90MSW10Dol (Run27) 14 29 10 10 37
18Bio72Plas10Dol (Run29) 23 32 8 8 29
72Bio18Plas10Dol (Run30) 32 29 4 6 28
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CHANGE IN ORGANIC CONTENT (mass%)
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LIQUID HYDROCARBON REDUCTION (MASS %)
Mass loss calculated as % change from 
total mass of 100% biomass run

Sasol Puralox partical size <125µm
Biomass average size was 1mm
Unstable runs due to void and flow 
dynamics inside reactor

Sasol Puralox and 
Washington Mills 
pure Al composition 
similar.
Particle size 1mm.

Washington Mills brown Al 
contains Ca, Fe and K
Particle size 1mm

1. Sasol Puralox runs unstable and no 
specific conclusion on runs, caused by 
ultra fine PSD of catalyst.

2. Washington Mills “white Al” runs were 
stable.  Influence of T observed.  
Average tar decreased in comparison 
with Sasol Puralox despite unstable 
runs with the Sasol catalyst.

3. Washington Mills “brown Al” runs 
resulted in most promising trends.  
Influence of temperature and catalyst 
observed.



CHANGE IN ORGANIC COMPOSITION 
(SEMI-QUANTITATIVE DISTILLATION)

PURE BIOMASS
850oC
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TIC: GTI run 5.D\data.ms
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TIC: GTI run 1.D\data.ms
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CHANGE IN ORGANIC COMPOSITION 
(SEMI-QUANTITATIVE DISTILLATION)
Temperature change ONLY
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TIC: GTI run 11.D\data.ms
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TIC: GTI run 16.D\data.ms

 .724

 6.066
 6.335

10.554

12.518

14.66819.275

20.089

21.264
21.664

25.901
26.068

28.797

30.983

31.370

36.786

37.072
40.033

41.03741.236

41.383

42.191

43.112

43.907

44.821

45.298

46.406

54.21355.190

55.707

55.949

56.86556.971

57.446

59.024

59.34260.543

60.779
61.095
61.401

61.730

PURE BIOMASS
950oC + white Al

0

0

0

0

0

0

0

0

0

0

0

0

0

e

TIC: GTI run 10.D\data.ms
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TIC: GTI run 8.D\data.ms
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CHANGE IN ORGANIC COMPOSITION 
(SEMI-QUANTITATIVE DISTILLATION)
Influence of both catalyst and temperature
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XRD AND SEM ANALYSES

Two samples from the MBU Gasification run were submitted for full XRD and SEM Analyses:

Lime Periclase Portlandite Calcite Dolomite Quartz Amorphous

GTI_232940-007 17.3 32.5 3.8 26.2 0.8 0.3 19

GTI_232940-10 35 36.5 1.6 9.4 2.6 0.2 14.6

Position [°2θ] (Cobalt (Co))
10 20 30 40 50 60 70

Counts

0
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15000

 GTI_232940-007

 GTI_232940-10

 Peak List
 Lime; Ca1 O1
 Periclase; Mg1 O1
 Portlandite; H2 Ca1 O2
 Calcite; C1 Ca1 O3
 Dolomite; C2 Ca1 Mg1 O6
 Quartz low; O2 Si1

Localized slag and amorphous droplets

Bulk of structure mineral / crystalline

AmorphousQuartzDolomite CalcitePortlanditePericlaseLime 
190.30.826.23.832.517.3GTI_232940-007

14.60.22.69.41.636.535GTI_232940-10



FACTTM EQUILIB SIMULATION ON FEED 
AND BED MATERIAL

• Similar profile as plastics, as expected
• First melt around 925oC
• Liquidus temperature 1225oC, the AFT (ISO) at 

1210oC
• 7-8 hours run to reach equilibrium…..no 

reason for this long run, however, result as 
expected.

Liquidus T = 1200oC
ISO = 1190oC

• Si:Al ratio for this specific blend resulted in a 
miscibility gap around 1150oC.

• Caused by a ratio data point where no
experimental validated data points are in 
databases.

• In this case not a concern as interpolation can
be done.

• The slag-liquid profile of all 3 
feedstocks is as expected with liquidus 
temperatures comparable with the 
AFT as conducted by the ISO 
Standards.

• Localized droplets of slag from the 
feed may be formed.  

Localized slag and amorphous droplets

Bulk of structure mineral / crystalline

AmorphousQuartzDolomite CalcitePortlanditePericlaseLime 
190.30.826.23.832.517.3GTI_232940-007

14.60.22.69.41.636.535GTI_232940-10



IN SUMMARY

1. The characteristics discussed in this presentation are not the only 
properties affecting gasifier performance and stability.

2. Interpretation of these results gives an indication of expected gasifier 
performance, and also the suitability of a specific feedstock for a 
gasification technology.

3. Gasification is not complex…..it how to convert the feedstock AND 
understand the feedstock. 
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