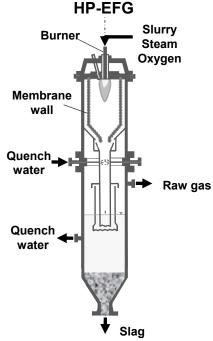


Entrained Flow Gasification of Suspension Fuels – A New Modeling Approach to Investigate Processes in Burner Near Field

Manuel Haas, Sabine Fleck, Thomas Kolb tcbiomass 2024 Itasca, IL, September 10-12, 2024



www.kit.edu

KIT - The Research University in the Helmholtz Association

Entrained Flow Gasification of Waste Based Fuels

Goal: Efficient Gasification Process

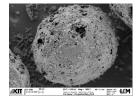
- High carbon conversion
- Fuel flexible operation
- Minimization of by-products: soot, tars, hydrocarbons

Challenge:

Fuel conversion is influenced by

- Atomization
- Fuel characteristics
- Temperature field
- Reactand mixing and flow field
- → Importance of burner concept!

Fuel Conversion Processes in HP-EFG


Understand and describe physical and thermo-chemical processes for modelling and operation of EFG

HP-EFG: From Fundamentals to Technical System

Fuel Characterization

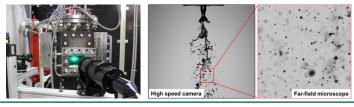
Sub processes of fuel conversion

Proof of concept

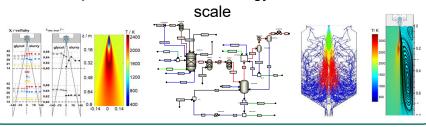
Atmospheric Gasification

Detailed description of subprocesses for gasification of liquid and suspension fuels

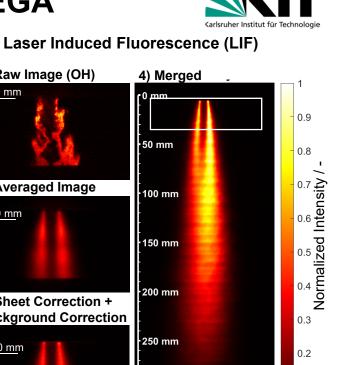
Pilot scale TRL 6-7


High Pressure Gasification

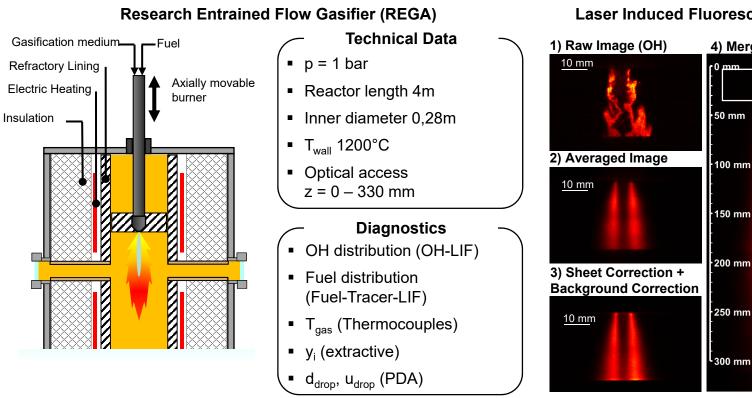
CCLab Entrained Flow Gasifier Data for process optimization and validation of CFD tool


Atomization

Experimental and numerical investigation for optimized design of HP-EFG burner / Virtual Spray Test Rig


Modeling + Scale up

Process optimization and technology transfer to industrial



Engler-Bunte-Institute – Fuel Technology (EBI ceb) Institute for Technical Chemistry – Gasification Technology (ITC vgt)

Research Entrained Flow Gasifier REGA

0.1

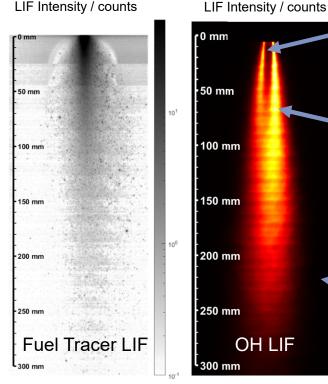
Flame Structure under EFG conditions

0.9

0.8

0.6

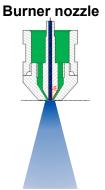
0.5


0.4

0.3

0.2

0.1


Haas et al., 2023, Fuel, https://doi.org/10.1016/j.fuel.2022.126572

Core Zone

- Only fuel, no OH radicals detected
- No oxidation reaction
- Low temperature

Oxidation Zone

OH radicals detected

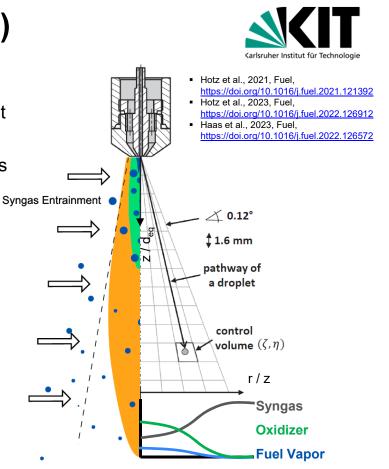
- Oxygen is consumed by reaction with fuel and syngas entrained from surrounding atmosphere
- High temperature

Gasification Zone

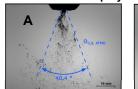
- No OH radicals detected, oxygen is no longer present
- Fuel droplets converted by slow gasification reactions
- Moderately high temperatures

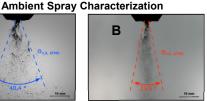
2-Phase Free Jet Model (2-Ph-FJM)

EFG Flame structure

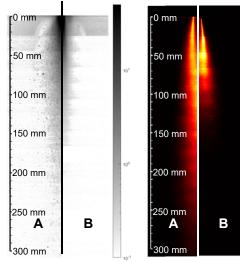

- Fuel spray converted in inverse diffusion flame of oxidizer (jet medium) and surrounding atmosphere (syngas)
- Reaction zones determined by jet mixing and spray dynamics

Model Principle


- Gas free jet theory expanded to 2-phase jets
- Coupling of mixing with droplet and reaction sub-models
- Independent variation of process parameters (spray properties, stoichiometry, ...) and sub-models (evaporation, heterogeneous reaction, ...)


► Influence of sub-process models on fuel conversion

► Detailed process understanding


Impact of Spray on Reaction Zone Structure?

OH-LIF Intensity / -

Fuel-Tracer-LIF Intensity / -

Experimental and Model Investigation

- Experiments at bench-scale (REGA) using advanced optical diagnostics (OH-LIF, Fuel-Tracer-LIF, PDA)
- Sensitivity study using 2-Ph-FJM to separate influence of droplet size, spray angle and gas momentum

Results: 0.8

0.9

0.6

0.4

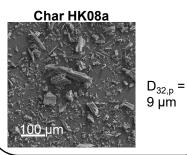
- Strong impact of spray and gas phase mixing on flame 0.7
 - length and shape through local stoichiometry
 - Fuel conversion in flame zone can be described and optimized using 2-Ph-FJM
 - ► Fundamental insight in sub-process interaction Application knowledge for burner development

OH concentration (model) 15° mol/m³ $\Theta_{0.9} = 40^{\circ}$ 25° 0.16 0.14 0.12 10'0 mr 0.1 150 mr 0.08 200 mm 0.06 0.04 250 mm

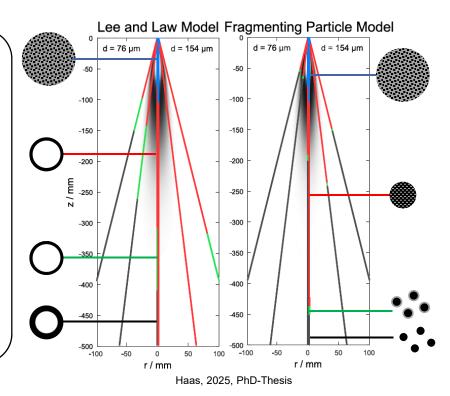
0.02

 Haas et al., 2023, Fuel. https://doi.org/10.1016/i.fue 2022.126572

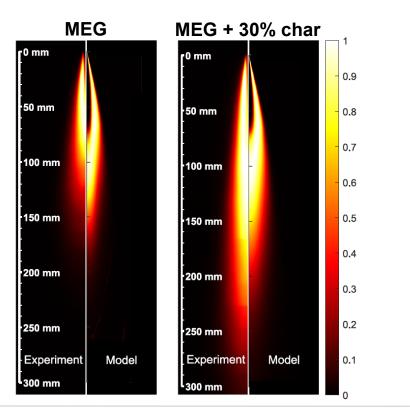
300 mr

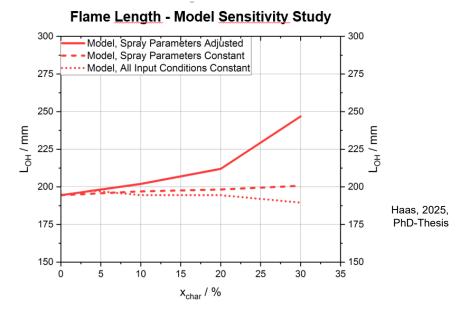

- Haas et al., 2024, Chem. Eng. Sci., submitted
- Dammann 2023, PhD-Thesis

Influence of Slurry Droplets on Flame?


Biogenic Slurry Fuel

- 30 m-% beech-wood char, 70 m-% glycol
- M
 ⁱliq = 12,7 kg/h
- $\dot{V}_{gas,N} = 7,5 \text{ m}^{3}/\text{h}$
- T_{ad} = 1700 °C
- λ = 0,42



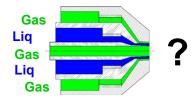

Expansion of 2-Ph-FJM

- Exchangeable slurry droplet models
- Coupling with gas phase by mass-, energy- and momentum balance
- In-house devolatilization and gasification kinetics
- → Investigate impact of slurry droplet model on flame and fuel conversion

Slurry Gasification: Impact of Solid Content?

→ Evaluate impact of single process parameters on flame and fuel conversion

Summary and Outlook



Summary

- 2-Phase Free-Jet Model: Computationally inexpensive tool to conduct parameter studies and compare sub-process models
- Model applied to describe EFG slurry spray flame
- Experimental validation in 60 kW EFG plant
- FJM is able to explain effects observed in experiment
- \rightarrow Valuable tool for burner development

Outlook

- Impact of burner concept on flame structure and soot formation?
- Influence of pressure on burner near processes?

Thank You for Your Attention!

Engler-Bunte Institute, Division of Fuel Technology (EBI-ceb) Engler-Bunte-Ring 1, 76131 Karlsruhe

Institute for Technical Chemistry, Gasification Technology Department (ITC-vgt)

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

Entrained flow gasification: Impact of fuel spray distribution on reaction zone structure (Fuel, 2023) Haas, Dammann, Fleck, Kolb

Two-phase free jet model of an atmospheric entrained flow gasifier (Fuel, 2021)

Hotz, Haas, Wachter, Fleck, Kolb