

Application of Data-Informed Simulation for Accelerating Biofuels and Alternative Feedstock Utilization

Peter Loezos, Bryan Tomsula – CPFD Software Inc. Andrew Kramer, Shrinivas Lokare – SunGas Renewables Inc.

TC Biomass Conference, Chicago, IL

September 10-12, 2024

This presentation is protected by U.S. and International copyright laws. Copyright © 2024 SunGas Renewables and CPFD Software. All rights reserved.

SunGas' Sustainability Pathway

The natural air capture (NAC) approach to achieving carbon reduction TODAY

SunGas Proven Technology Embodied in the System 1000™ Offering Enables –

- Renewable Energy Production in Multiple Energy Segments
- Production of Low and Negative
 Carbon-Intensity Energy Products
- Qualification for Renewable Energy
 Incentives and Credits
- Criteria Pollutants Reduction by 99%
 Compared to Biomass Power Plants

The S-1000 Product

Gasifier

- Versatile feedstock capabilities
- Unique Jet & Grid design creates optimum conditions for fast reactions and uniform temperature distribution

Feedstock Handling System

- Lock-hopper based design crossing pressure barrier
- Flexible feed options screw-feeding or pneumatic feeding

Ash Handling System

- Removes and cools bed and filter ash
- Conveys to silo storage pneumatically

Tar Reformer

- Complete reforming of all tars
- Immune to contaminants in feedstock

Syngas Cooler

- Capable of operating slagging/non-slagging conditions
- Self-cleaning design of heat transfer components

Syngas Filter

- High efficiency (99.9%) of removing fines
- Surface modified sintered metal provides extended life

Syngas Scrubber

- Primary gas cooling and moisture removal
- Trace contaminate removal, HCI, NH3

CPFD Introduction

- Physics-based engineering software package
 - Virtual Reactor is the only commercial software package focused specifically on chemicallyreactive fluid-particle flow at large scale
- Software Licensing
 - Use Virtual Reactor in-house
 - Single site and global enterprise licensing available
 - On-premise and cloud-served licensing
- Services
 - Project-based or broader collaboration
- Training and Technology Transfer
 - New user training, custom/advanced training, QuickStart and general technology transfer
- Application Areas
 - FCCU / Refining, Petrochemicals, Gasification, Materials and Chemicals, Power Generation, Clean Technologies

Sungas Renewables"

Project Overview

- Staged approach to develop a commercial scale model of the Sungas gasifier
- Initial model developed based on U-Gas pilot plant data
 - Provides proof of concept for model development
 - Test cases based on various pilot plant operating conditions
 - Utilized for scale up design
- Subsequent models to be developed focusing on modifications to the reaction / kinetic pathways
 - Feedstock dependent devolatilization
 - Tar reforming
 - Kinetic dependence on bed material composition

Model Setup

- Extents of model are focused on the gasifier vessel
- Kinetic network implemented based on experimental data coupled with literature gasification kinetics
- Plug flow model was developed to allow for regression of kinetic expressions across the pilot plant operating conditions

Results

- Base case model was developed utilizing Sungas pilot plant gasifier data
- Hydrodynamics and temperature profile validated against experimental data sets
- Results provide valuable insight into the impact of hydrodynamics and mixing behavior

Results

- Model results correlate well with experimental data
- Axial gas compositions are able to be monitored and reported
- Allows for optimization of reactor operating conditions and valuable insight into gasifier performance.

Model Insights

- Impact of bed material size distribution was studied
- Hydrodynamic behavior from transition to Geldart Group B from Group D is captured in the model

Model Insights

• Enhanced mixing is observed in the modified gas with bed material consisting of Group B type solids

Conclusion

- A CPFD model was developed for the U-Gas pilot plant gasifier
- Data based modeling approach was utilized for implementing reaction network and hydrodynamic models
- Modeling based approach coupled with sound engineering practices aid in assessing impact of variations in key operating parameters, such as pressure, throughput, feed type, etc.

Thank You

This presentation is protected by U.S. and International copyright laws. Copyright © 2024 SunGas Renewables and CPFD Software. All rights reserved.