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C5+

Catalytic Fast Pyrolysis (CFP)

Lignocellulosic
Biomass

Pretreatment
• Debarking
• Deashing
• Milling
• Grinding
• Drying

Pyrolysis
~ 500 °C, 100 °C/sec

Various Reactors

Gases
• CO, CO2,H2O
• Trace Gases
Vapors
• Tars & Oils
• 35-40 w% Oxygen
Char

Catalytic Upgrading
     

~ 350-500 °C
Reactors
• Fluidized

• Bubbling Beds
• BFCCs

• Fixed Bed 

C4- Gases
• CO, CO2,H2O
• HC’s & Oxy’s
C5+ Vapors
• HC’s & Oxy’s
• 15-25 w% Oxygen
Catalytic Coke

Hydrotreating
Hydrocracking

• Gasoline
• Ren. Diesel
• SAF
• Fuel Oil

    H2   
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NREL’s “2FBR”: A Flexible CFP Unit
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Mitigating risks for scale up of Catalytic Fast Pyrolysis catalyst 
regeneration requires accurately capturing CO and CO2 kinetics

Coked catalysts from Catalytic 
Fast Pyrolysis ChemCatBio team

When bio-coke combusts 
during catalyst regeneration 

(de-coking) does it make 
CO or CO2?

For nice presentation on afterburn in FCC Catalyst Regenerators see
https://www.youtube.com/watch?v=vyJNbcsylpM (Ray Fletcher, CPFD)

Fluid 
Catalytic 
Cracker 

(FCC)
Regenerator

cyclones

flue gas

spent catalysts
(DCAT)

go into bed

Air/O2/steam 
distributor

regenerated 
catalysts
(ECAT)
exit bed

Fluid 
Catalytic 
Cracker 
(FCC)
Riser

Py Oil

Upgraded 
Py Oil

https://www.youtube.com/watch?v=vyJNbcsylpM
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ZSM-5 Based Catalysts Used in 2FBR Bubbling-Bed Upgrader

80% ZSM-5
20% Alumina

+/- P-promotion
 (2.5 wt%)

Geldart B
Dp = 500 – 800 µm

Spent Catalyst:
9-13 wt% CoC 

(Coke on Catalyst)

1
Extensive laboratory 
characterization of 
coked catalyst: TPO, 
NMR, microscopy….

2
Develop kinetics for 
coke oxidation from 
TPO data using FEM 
fixed bed models

3

Extend to FCC catalyst, 
i.e. Geldart A particles 
with much lower CoC
MODEL THE BFCC 
REGENERATOR
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Coke Characterization and Combustion Behavior
Temperature Programmed 

Oxidation (TPO): 
“Low” and “High” 

Temperature Carbon
Whole Pellets (~600 µm) 

vs Crushed (< 100 mesh)

13C-NMR                STEM-EELS

Consortia Acknowledgements: 

CDM: Catalyst Deactivation 
Mitigation

ACSC: Advanced Catalyst 
Synthesis and Characterization

Microscopy
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Quality of Fit: Four TPO Runs
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Parameter Units Value
aCO_CO2 m3/(kg.s) 0.2925
aCO2_low

1/s

1,087
aCO2_hi 5,102
aCO_low 33,881
aCO_hi 594,715

bCO_CO2

-

0.0695
bCO2_low 0.5384
bCO2_hi 0.4793
bCO_low 0.6650
bCO_hi 0.9739

EaCO_CO2

J/mol

14,680
EaCO2_low 88,103
EaCO2_hi 118,987
EaCO_low 109,677
EaCO_hi 143,340

Unpromoted Catalyst
Coke Combustion Kinetic Model

1. Pool the CO and CO2 outflow data from TPO runs and fit model 
parameters using a “0D” (gradientless) spreadsheet model and SOLVER

2. Use 2D full-gradient COMSOL FEM model to adjust the CO oxidation 
constant to account for mass and heat transfer effects in catalyst particles 
and in bed
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Parameter Units COMSOL Barracuda
aCO_CO2 m3/(kg.s) 0.2925 0.6107
aCO2_low

1/s

1,087 90,689
aCO2_hi 5,102 425,663
aCO_low 33,881 2.827E+06
aCO_hi 594,715 4.962E+07

bCO_CO2

-

0.0695
bCO2_low 0.5384
bCO2_hi 0.4793
bCO_low 0.6650
bCO_hi 0.9739

EaCO_CO2

J/mol

14,680
EaCO2_low 88,103
EaCO2_hi 118,987
EaCO_low 109,677
EaCO_hi 143,340

1. Assume the coke profile inside the 80 µm particle is uniform 
 AVOID MODELING THE PARTICLE INTERIORS

• The 80% ZSM-5, 20% Al2O3 formulation is too high in 
Z/M (too many active sites and too low in mesoporosity, 
i.e.Thiele number is too high).  This very likely leads to 
the core-shell coke profile.  WE EXPECT A LOWER 
Z/M FOR BFCC CATALYSTS.

2. Convert reaction expressions to volume concentrations 
(mass/volume) instead of surface concentrations 
(mass/area)

Translate Model to Barracuda:
80 µm BFCC Particles with 1 wt% CoC
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BFCC Regenerator Case Study: 
5 metric ton/day (mTPD) Demo Unit

Fixed Parameter Units Value
Biomass Feedrate mT/day

 (dry basis)
5.0

Catalyst Circ Rate 45.0
Catalyst/Biomass - 9.0

Coke Yield wt% 9.0
DCAT Coke on Catalyst (CoC)

wt%
1.00

DCAT CoC “Low” Form 0.61
DCAT CoC “High” Form 0.39
Base Catalyst Inventory kg 325
Stoichiometric Airflow kg/s 0.06

Nominal Pressure kPa 274
Catalyst Particle Density kg/m3 1,380
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Variables Studied

Variables Units Range
Relative Airflow (Stoichiometric = 1) - 1.0 -1.3

Catalyst Inventory, kg 1.0 - 1.6
DCAT Temperature

Effect of Riser Outlet Temp (ROT) and/or 
catalyst cooler

°C 450 - 550

Important Outputs
Variables Units Significance

ECAT CoC wt% Sets the activity of the catalyst 
returning to the riser

Flue Gas CO v%
An indication of the potential for 
afterburn (CO combustion in 

freeboard)
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Regenerated ECAT Carbon on Catalyst 
(CoC)

Relative Airflow

1.0

1.1
1.3
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Flue Gas Composition
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Catalyst Flow Segregation

Without Blended Acceleration

The Blended Acceleration Model

P. J. O'Rourke and D. M. Snider. A new blended acceleration model 
for the particle contact forces induced by an interstitial fluid in dense 
particle/fluid flows. Powder Technology, 256(): 39–51, 2014

Weighting parameter for blending the MP-PIC and average 
particle accelerations:

Default value is n = 6

Mixing of Biomass and 
FCC Catalyst

Adkins and Kapur, Barracuda 
Users Conference (2015)

Mixing of Coal Char
and Sand

Zhang et.al, Powder
Technology, 228():
206-209, 2012
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Effect of Blended Acceleration (n = 6)
No Blended Acceleration

Blended Acceleration (n = 6)
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Effect of Phosphation
Parameter Units Value

aCO_CO2 m3/(kg.s) 0.1852
aCO2 1/s 40.851
aCO 171.58

bCO_CO2
-

0.06993
bCO2 0.6776
bCO 1.0

EaCO_CO2
J/mol

20,729
EaCO2 76,029
EaCO 83,117
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Second Study

Phophated vs Unphosphated

DCAT Temperature = 580°C     Airflow = Stoichiometric
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Conclusions
• Computational models based on bio-coked zeolite catalyst for Catalytic Fast 

Pyrolysis indicate catalyst regeneration in Fluid Catalytic Cracker type reactors is 
feasible and manageable with proper operating parameters

– Unphosphated catalyst
• Initial results indicate that excessively high temperatures (≥ 780°C) could be needed to reduce ECAT CoC below 

0.1 wt%.  
– Tradeoff: ECAT activity vs long-term hydrothermal deactivation of zeolite (also activity)

• At demo scale (5 mTPD) risk of afterburn is low
– Need to consider commercial scale

– Phosphated catalyst
• Combustion behavior is different!  Higher CO/CO2 ratio, lower regenerator temperatures, higher ECAT CoC  

Needs higher DCAT temperature
• More TPO data needed at other O2 levels

– Segregating Flow
• Segregating flow is very important to regenerator performance
• Data needed!  
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