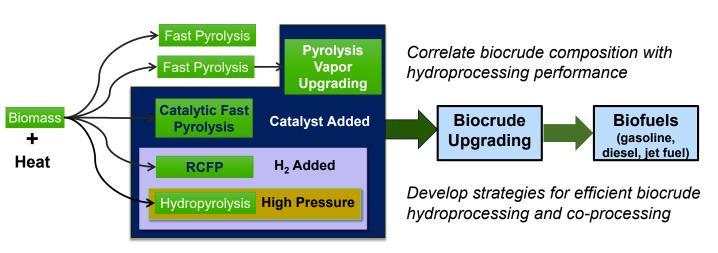
Scaling Up Reactive Catalytic Biomass Pyrolysis


David C. Dayton, Ph. D. RTI Senior Fellow and Director of Biofuels

September 11, 2024

Biomass Pyrolysis Pathways for Advanced Biofuels

Apply catalysts and reagents to maximize yields and improve biocrude *quality* (oxygen content, chemical composition, thermal stability)

RCFP = Reactive Catalytic Fast Pyrolysis

- Mante, O. D., Dayton, D. C., Carpenter, J. R., Wang, K., & Peters, J. E. (2018), Pilot-scale catalytic fast pyrolysis of loblolly pine over γ-Al₂O₃ catalyst. *Fuel*, 214, 569–579.
- Cross, P.; Wang, K. G.; Weiner, J.; Reid, E.; Peters, J.; Mante, O.; Dayton, D. C., Reactive Catalytic Fast Pyrolysis of Biomass Over Molybdenum Oxide Catalysts: A Parametric Study. Energy & Fuels 2020, 34 (4), 4678-4684.

Overview

Motivation

- RCFP process demonstrates improved biocrude yields and lower char yields compared to CFP
- RCFP biocrude upgrading demonstrates better performance (no reactor pressure drop increase) compared to CFP biocrudes

Objectives

- Design, fabricate, and install an engineering-scale (1-5 kg/hr) RCFP reactor system based on operation of a 300 g/hr laboratory fluidized be reactor system
- Scale up a fluidizable RCFP catalyst based on the formulation of commercially available extrudates
- Optimize the process and maintain steady-state hydrodeoxygenation (HDO) catalyst activity to maximize biocrude yield and quality

Design Features

- Tail gas recycling to minimize hydrogen use
- Catalyst addition while drawing down the bed to maintain HDO activity

RCFP Process Development

Parameter	Target Range
Pyrolysis (°C)	445-475
Char/coke oxidation (°C)	500-600
Catalyst reduction (°C)	530
System pressure (psia)	16-25
Biomass feed rate (g/h)	240-420
H ₂ concentration (vol%)	80
Catalyst Loading (g)	300-500
Total gas flow rate (slm)	20-30

Laboratory Fluidized Bed Reactor System

Biomass Feedstock

- Loblolly pine (Piedmont Pellets, NC)
- 8-10 wt% moisture
- 47.8wt%-dry C; 6.4 wt%-dry H; 0.08 wt%-dry N; 45.8 wt%-dry O by difference

RCFP Catalysts

- Mo-based (HT-105343) extrudate
- Spray dried Mo-based catalyst development

RCFP Biocrude Production

12-L RCFP bio-crude produced in 2"FBR over 10 months Average Hydrogen Consumption: 2.3 wt% Biomass

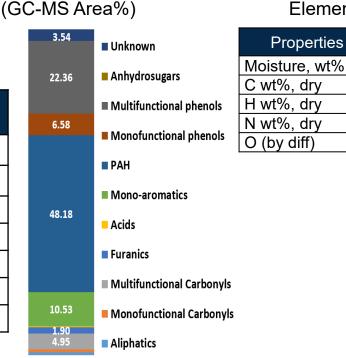
Reaction Conditions

Catalyst: Mo/Al₂O₃

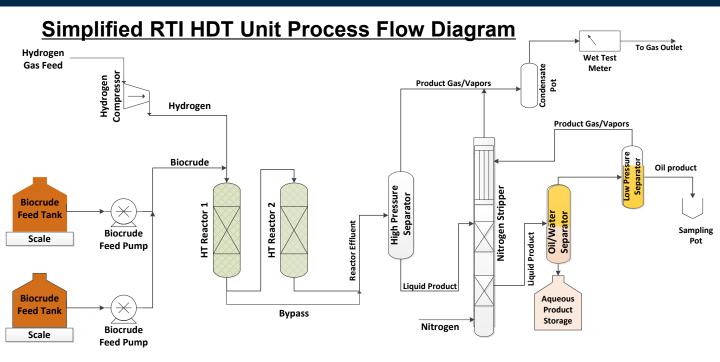
Hydrogen: 80 vol% Temperature: 460°C

	Carbon Balance	Mass Balance
Aqueous	2.5	27.4
Organic (C ₄ ⁺)	43.0	19.6
Liquid Bio-crude	26.4	15.9
C4-C6	16.6	3.7
Gas	26.8	13.1
Char+Coke	30.1	35.9
Total	102.4	96.0

RCFP Biocrude Composition **Flemental**


Properties

8.5

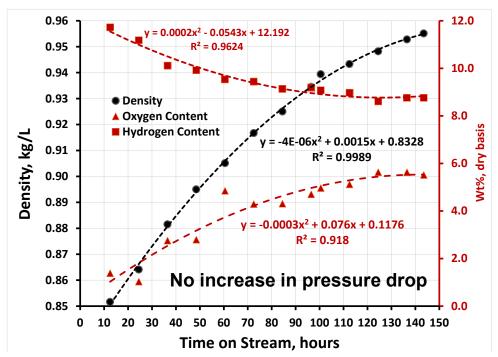

0.2

19.3

73.2 7.3

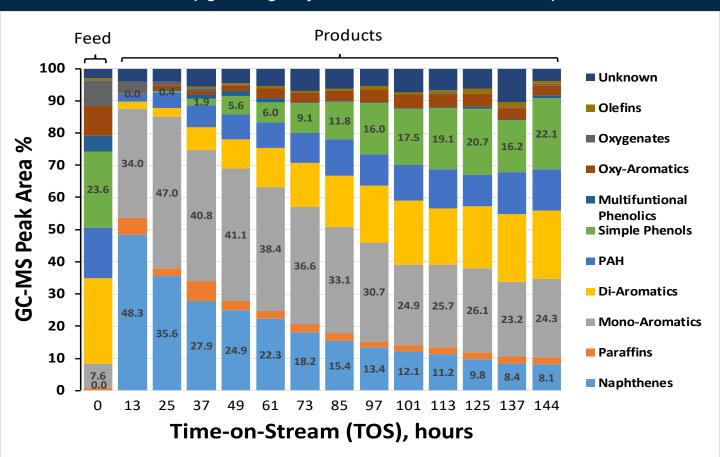
Biocrude Upgrading Overview

Reactor volume: 350 mL

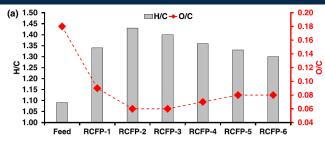

I HSV - 0.1 to 1.0 Catalyst volume: 20 - 250 mL Flow rates - 50 to 250 mL/h Max. design pressure - 3000 psig Max. design temperature - 450 C

Analysis of Biocrude and HDT products include:

Elemental Analysis (CHNSO), GC-MS, FTIR, NMR, Carbon Number Distribution, Distillation by ASTM D1160, SG 60/60 by ASTM D4052, Kinematic Viscosity by D445, and Karl Fischer Titration.

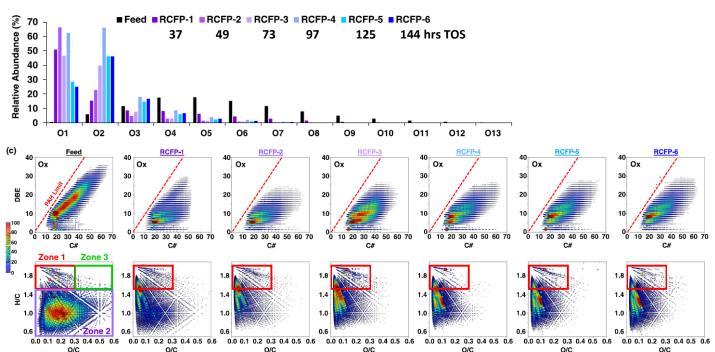

RCFP Biocrude Upgrading: Physicochemical Properties

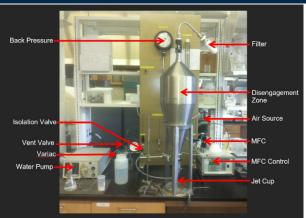
Catalyst	TK-341	Pressure (barg)	137.9
LHSV (h-1)	0.31	H ₂ /oil ratio (NI/I)	3300
Average Temperature (°C)		300	



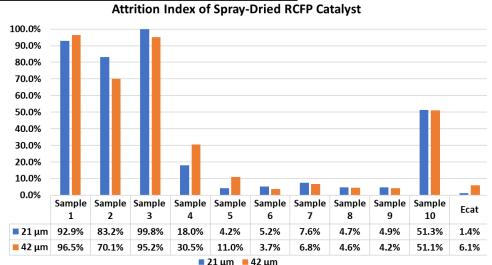
Dayton, D. C.; Mante, O. D.; Weiner, J.; Komnaris, C.; Verdier, S.; Gabrielsen, J., Integrated Reactive Catalytic Fast Pyrolysis: Biocrude Production, Upgrading, and Coprocessing. *Energy&Fuels* **2022**, *36* (16), 9147-9157

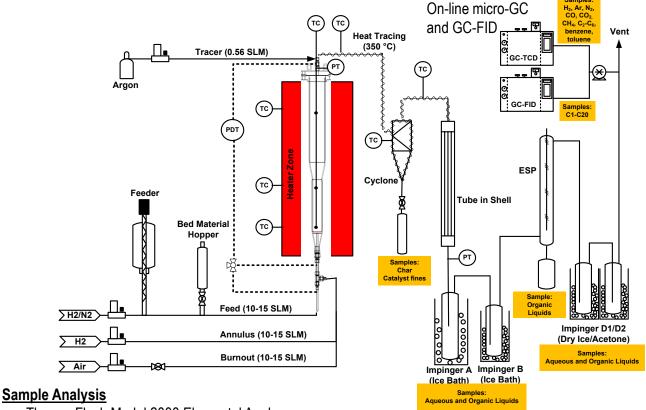
RCFP Biocrude Upgrading: Hydrotreated Product Compositions


Advanced Analytical (FT-ICR-MS) Sample Analysis



Chacón-Patiño, M. L.; Mase, C.; Maillard, J. F.; Barrère-Mangote, C.; Dayton, D. C.; Afonso, C.; Giusti, P.; Rodgers, R. P., Petroleomics Approach to Investigate the Composition of Upgrading Products from Pyrolysis Bio-Oils as Determined by High-Field FT-ICR MS. *Energy & Fuels* **2023**.

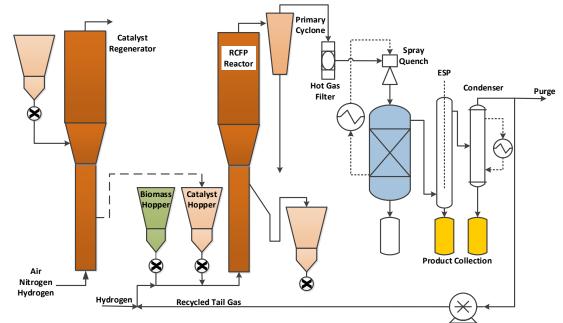

RCFP Catalyst Scaleup – Attrition Testing


Jet Cup Attrition (ASTM D8414)

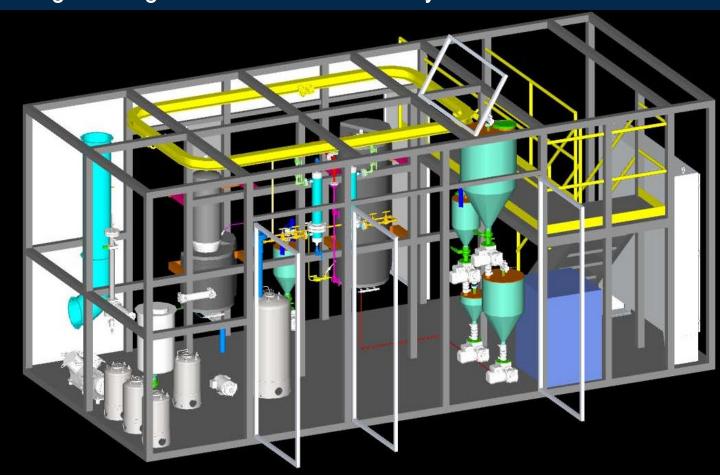
- Mimics particle-wall impacts in cyclones, fluidized beds and risers
- Attrition index = % of original sample turned into fines (21μm and 42μm)
- Compared to Ecat

Helios Particle Size Analyzer

RCFP Catalyst Screening and Biocrude Production


- Thermo Flash Model 2000 Elemental Analyzer
- Mettler Toledo V20 Titrator for Karl-Fischer Moisture measurements
- Agilent 7890A gas chromatograph and 5975C mass spectrometer detector for semi-volatile compound identification and semi-quantification

Catalyst Scaleup - Summary of Performance Testing


wt%C	Sample 4 Average	Sample 8 Average	Sample 9 Average
Biocrude	27.13%	19.3%	27.6%
Imp A	11.25%	3.9%	10.9%
Imp B	0.76%	0.9%	0.8%
ESP	13.13%	12.6%	13.7%
Imp D	1.98%	2.0%	2.3%
Aqueous	4.14%	2.2%	2.5%
Imp A	3.42%	1.8%	1.8%
Imp B	0.23%	0.2%	0.2%
ESP	0.00%	0.0%	0.0%
Imp D	0.49%	0.4%	0.5%
Solids	30.81%	38.5%	32.8%
Total Gas	34.77%	34.5%	33.1%
C1-C3 gas	10.63%	9.9%	9.5%
C4+ Gas	12.03%	8.2%	7.8%
СО	7.16%	11.3%	11.0%
CO2	4.94%	5.2%	4.9%
"Uncondensed"	4.12%	3.4%	3.1%
Ceff	43.27%	30.8%	38.4%
Carbon Balance	100.9%	97.9%	99.1%
Mass Balance	100.8%	96.4%	97.2%
Biocrude wt%O-dry	16%	14.9%	10.4%

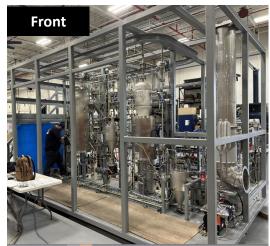
RCFP Process Scaleup

Parameter	Target Range	Design Basis
Pyrolysis temperature (°C)	445-475	400–650
Char/coke oxidation temperature (°C)	500-600	500-700
Catalyst reduction temperature (°C)	530	500-600
System pressure (psia)	16-25	15–90
Biomass feed rate (g/h)	240-420	0-1000
Hydrogen concentration (vol%)	80	0-80
Catalyst Loading (g)	300-500	200-1000
Total gas flow rate (slm)	20-30	0-45

Engineering Scale RCFP Unit – Layout

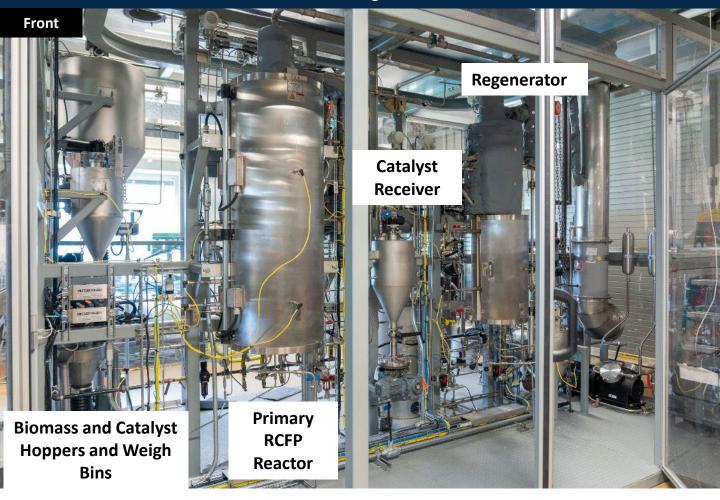
Fabrication

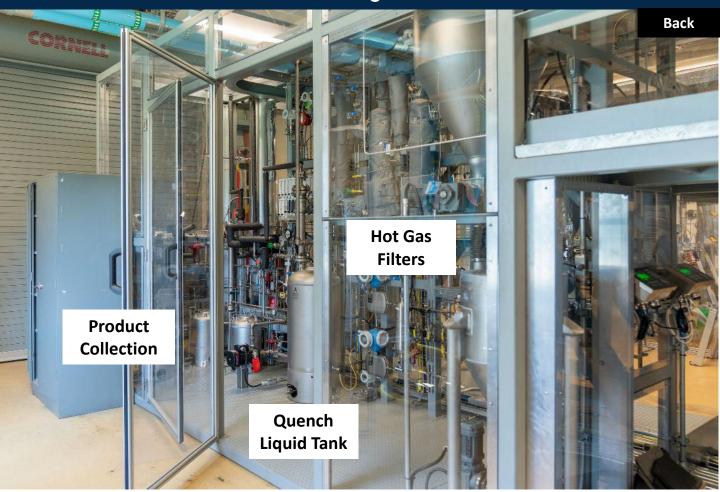
Biomass and Catalyst Hoppers and Weigh Bins


Primary RCFP Reactor

Regenerator and Catalyst Receiver

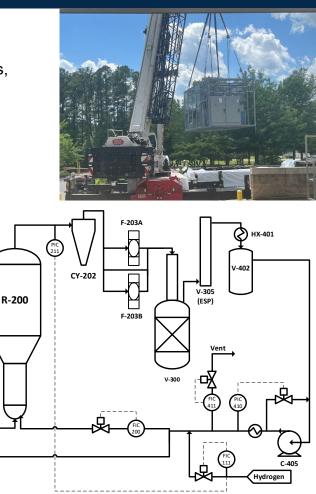
Hot Gas Filters




Installation and Commissioning

Installation and Commissioning

Installation and Commissioning



Staged Commissioning Plan Timeline

- Factory Acceptance Test April 15-18, 2024
- Delivery May 29, 2024
- Utility Connections (power, gases, chilled water, vents, ventilation) – Completed June 15, 2024
- Cold Flow Testing, nitrogen only (leak check, control system shakedown, etc.) – Completed July 15, 2025
- Hot Flow Testing, nitrogen only July 15, 2024 September 30, 2024
 - Heater testing complete
 - Inert solids and CFP catalyst loading complete
 - Biomass feeding optimization ongoing
- Biomass CFP for biocrude collection optimization

Catalyst

- RCFP Process Operations
 - Scheduled to begin Oct 1, 2024
 - Catalyst delivery in Sept 2024

Summary and Conclusions

The integrated biomass pyrolysis biocrude hydrotreating process is a pathway to infrastructure compatible, hydrocarbon biofuels

 10x RCFP process scale up and demonstrate extruded commercial catalyst performance in a fluidizable form

Maximize biofuel yields for attractive process economics

- RCFP liquid organic biocrude yields are generally higher than CFP
- Decrease char yields
- Investigate improved yields with tail gas recycling

Biocrude thermal stability, oxygen content, and type of oxygenates are quality metrics

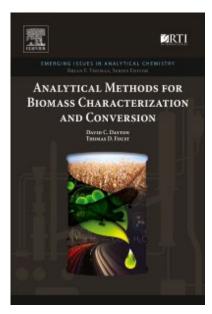
- Maximize carbon efficiency of the hydrotreating step
 - RCFP biocrudes contain lower oxygen content than CFP biocrudes with less anhydrosugars and acids
 - Mitigate HDT catalyst deactivation and reactor plugging by removing or eliminating reactive biocrude components

Increase long-term catalyst activity to achieve commercial performance (1000 hrs TOS)

- Preliminary upgrading shows no reactor fouling after 144 hours time on stream
- Validate RCFP biocrude quality for long term upgrading

Acknowledgements

Andrew Jones
Melinda Barron
Mitch Johnson
Katy Leitz
Poulami Roy


TOPSOE

Michal Lutecki Magnus Zingler Stummann Jostein Gabrielsen

The **Fuel for Thought** Podcast

The world's first podcast about renewables for the refinery industry.

https://renewables.topsoe.com/podcast

