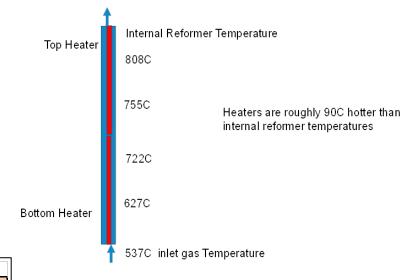


Cool GTLSM for the Conversion of Biogas to Jet Fuel

Soheil Hussain, Terry Marker, Pedro Ortiz-Toral

tcbiomass | 09/11/2024

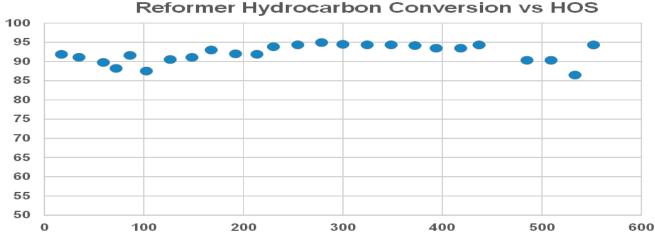
Cool GTL


- Integrated, modular skid mounted system
- Converts CO2-rich hydrocarbon streams into high quality fuels
- Low CAPEX and compact electric reformer to produce syngas
- FT reactor followed directly by an upgrading reactor allows for all wax to be eliminated
- Unique catalysts used in all stages of process

E-Reformer Design

- Up flow reactor design
- Internal heating elements
- Operates at mild conditions

CED modeling	and	contro	lofa	storm	meth	ano re	oformi	ng roa	ctor		CFD	mode	el va	lidatio	n with	an ind	dustrial	I SM	R						
Panagiotis D. Christofides ^{a,b,*}						Case							Ga	Gas outlet i		mole fraction									
									deltaP	(Pa)	Out	let T(K	i) CH	14	H2		CO		CO2	H2O					
	^a Department of Chemical and Biomolecular Engineering. University of California. Los Angeles, CA 90095-1592, USA 2016 ^b Department of Electrical Engineering. University of California, Los Angeles, CA 90095-1592, USA					Lao	Lao		2.12	83E+0	5	1110	0	0.0426	().4645	0	.0873	0.0588	0.3467					
											Curr	ent CF	FD	1.94	00E+0	5	1105	5	0.0443	0).4701	. 0	.0772	0.0679	0.3405
:	contour- Static Te [k]	851	re 866	881	896	911	925	940	955	970	985	1000	10	15 103) 1045	1060	1075	1089	9 1104	1119	1134	1149			
Valida	ted	with	an	indı	ıstria	al Sl	MR:	Upp	oer c	cont	our v	vith	rea	actio	n, Iov	ver o	contc	our	witho	ut r	eact	ion e	as a	referen	ce

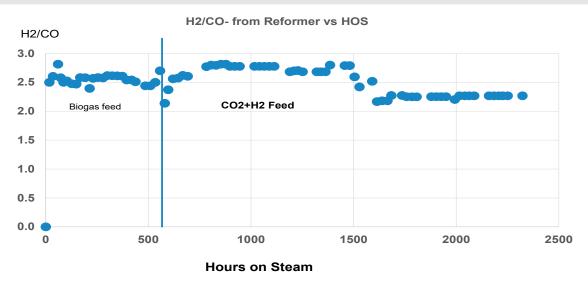


Reformer Performance – Biogas Feed

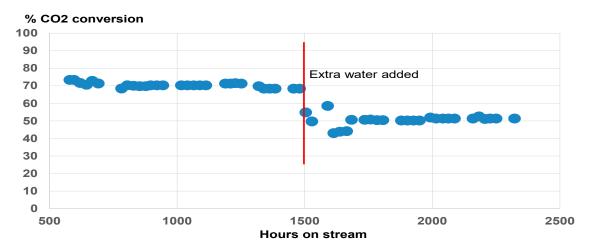
- First 500 hours used bottled biogas feed which simulated GTI Energy's IH2 process offgas
- Hydrocarbon conversion was between 90-95%

Reformer Feed Comparison

	Typical IH2 feed	Bottled Gas feed		
H2 vol	25	24		
Methane ,vol %	22	18		
Ethane, vol%	18	-		
Propane, vol %	7	18		
CO ,vol%	23	-		
CO2,vol%	5	41		
Total vol%	100	100		



Hours on Stream

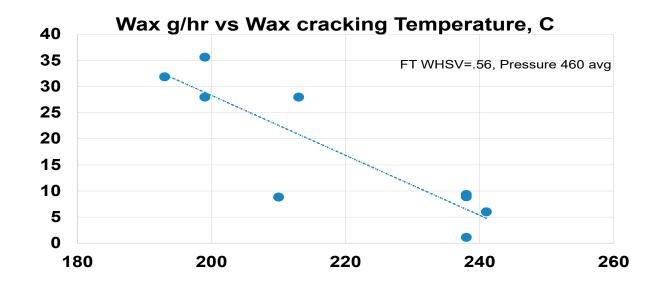


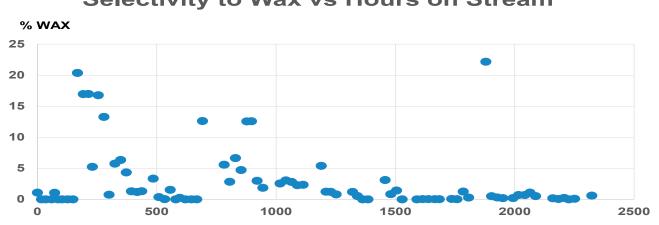
Reformer Performance – CO2 and H2 Feed

- 1700 hours of testing with CO2 and H2 as feed
- Electric reformer produces syngas with H2/CO ratio ranging between 2.1 and 2.4
- CO2 conversion around 50% under the CO2/H2 feed
- No more sooting noticed with the addition of steam

Reformer CO2 Conversion vs HOS

Fischer Tropsch and Upgrading


- High conversion per pass. Have achieved 60% conversion of CO
- Fischer-Tropsch products are directly upgraded in the 2nd stage reactor via unique cracking and hydro-isomerization catalysts
- Upgrading allows for:
 - Higher yields
 - -Elimination of wax
 - High quality fuels



Upgrading Continued

- Low selectivity to wax less than 1 %
- Upgrading reactor operated at 235 to 240C to ensure all wax was cracked
- FT Liquid product selectivity ranging between 60 and 70%

Selectivity to Wax vs Hours on Stream

Hours on stream

Jet Product Analysis

- Focus on trying to meet Jet A specs, specifically freeze point
- Addition of H2 aided in the reduction of freeze point.
- Lower H2 flows can be used if CO concentration to the upgrading reactor is reduced
- Changing endpoint only slightly increases the jet yield

Cut Point °C	2/19	2/26	C Number distribution
132-260	49.5	50.3	C9-C14
132-271	51.8	52.7	C9-C15
132-288	52.1	52.9	C9-C16

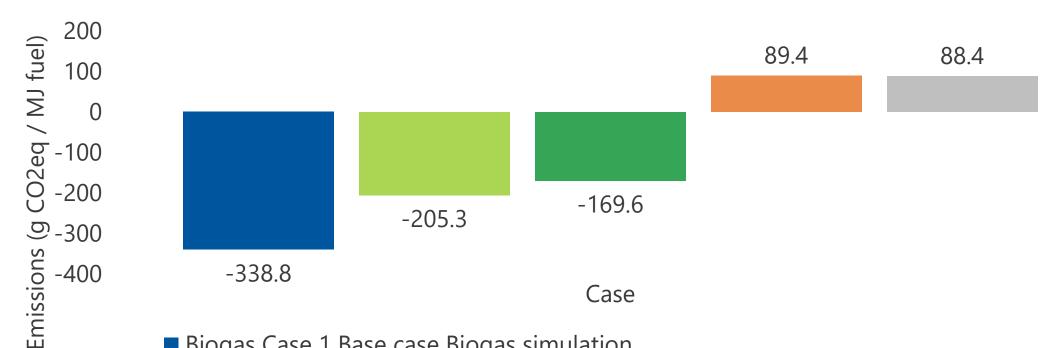
% Jet in sample vs. Endpoint

Jet Freeze point vs End point with and without Hydrogen Addition End Point Temperature C 0 255 275 280 285 290 295 300 305 260 265 270 310 -10 No extra H2 No isom catalyst -20 -30 NO extra hydrogen, isom catalyst -40 -50 H2 addition, isom catalyst -60

1/29/2024 Sample Results

	Result	ASTM1655	ASTM 7566	ASTM 4054	Test method	Meets spec
Freeze. C	-54	-40 Jet A -47Jet A1	-40 Jet A -47 Jet A1	-40 Jet A -47Jet A1	D5972	yes
Density,g/cc	.76	.775840	.730770 (for FT liquids)		D4052	Yes (for FT liquids)
Flash	38	Min 38	Min 38	Max68	D58	yes
Distillation					D86	Yes
10 % recovery C	157	205max	205 max	150-205		Yes
50% recovery C	175			165-229		Yes
90% recovery C	218			190-262		Yes
Final boiling point	275	300max	300 max	300 max		Yes
Distillation Residue	1.1	1.5max	1.5 max			Yes
Т90-Т10	91	40min	22 min			Yes
T50-T10	32	15min	15 min			Yes
Acidity, acid number mgKOH/g	.59	.1max	<.015			No
Heat of Combustion MJ/kg	46	42.8min	42.8 min		D240	Yes
Copper strip corrosion	1a	1max	1 max		D130	Yes
Kinematic viscosity @ -20C,mm2/s	2.86	8max	8max		D445	yes

TEA


- Two cases conducted:
 - IH2 biogas (producing 818 b/d)
 - Digestor gas (4.9 b/d)
- Breakeven cost of jet fuel at \$3.2/gal with IH2 case
- Further improvements to help bring costs down even more

	IH2 Biogas	Digestor Biogas
Direct cost	112.7	38.7
Indirect Cost	25.8	11,9
Direct + indirect	138.5	50.6
Contingency (30%)	41,6	15.2
Overall costs	180.1	65.8

	IH2 Biogas	Digestor Biogas		
Feed gas composition	Methane, ethane, propane, CO2,CO,H2	Methane, CO2		
Size Million ft3/d feed gas	8.4	1.2		
Size bbl/d product	818	118		
Size Million gal/yr product	11.9	1.7		
Total Installed Capital Cost \$Million	180	66		
Breakeven \$/gallon (no RINS)	3.2	6.2		
Breakeven \$/gallon(with RINS)	2.2	5.2		

GTI ENERGY

LCA

Biogas Case 1 Base case Biogas simulation.

- Biogas Case 2 PEM electrolysis unit & optimized Bi-Reformer
- Biogas Case 3 Replaced steam compressor turbine driver w/ motor drive.

IH2 Case 1 Base case IH2 simulation.

■ IH2 Case 2 Replacement of PSA with Membrane.

GTI Energy - Aether Fuels

Aether Fuels

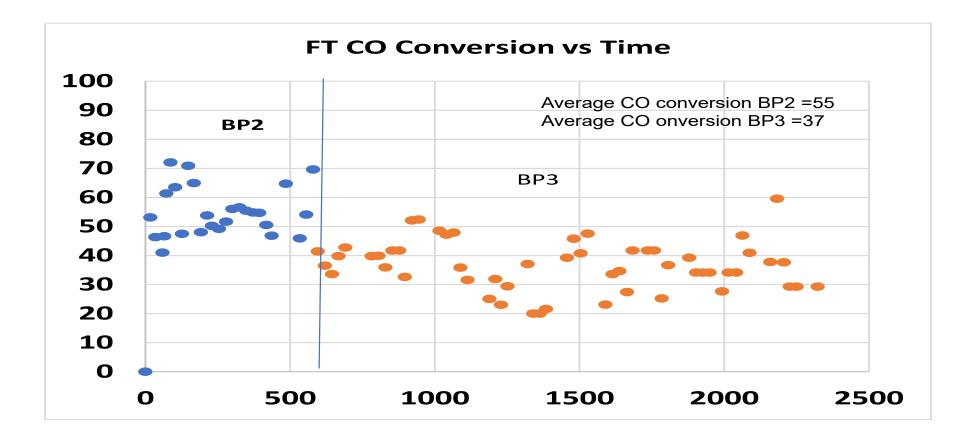
- Aether Fuels is the exclusive licensor of the Cool GTL technology
- Aether Fuels will be commercializing the technology as the proprietary Aether Aurora solution

Acknowledgements

This Project was funded by the DOE (EE0008507)

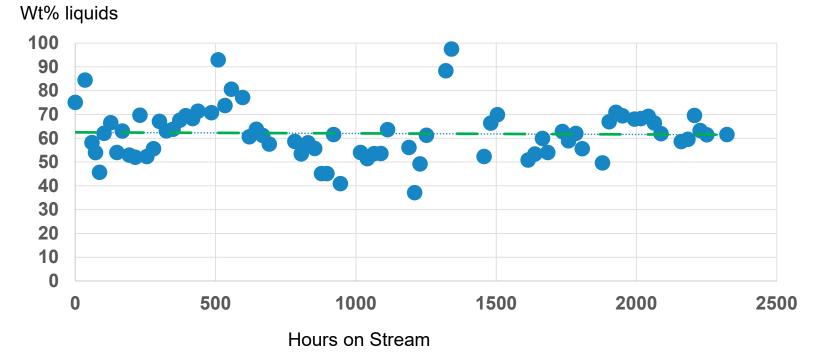
Special thanks to Dr. Robert Handler and Prof. David Shonnard for their work on the LCA

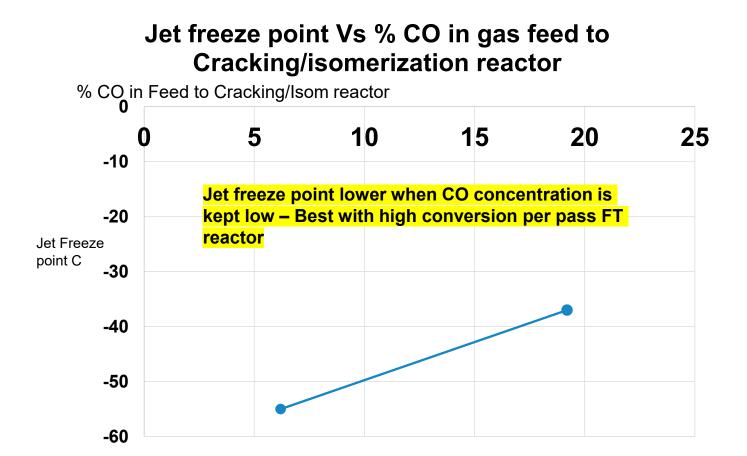
solutions that transform


Questions

Contact Information

Email: shussain@gti.energy


FT CO Conversion vs HOS


Selectivity to Liquid Products

Selectivity to Liquid vs Hours on Stream

%CO Present in Upgrading Reactor vs Freeze Point

