

Production of Sustainable Aviation Fuel from Woody Biomass via Catalytic Fast Pyrolysis and Hydrotreating

Michael Griffin tcbiomass 2024

Background

Project Goal: Develop a technology pathway to convert woody biomass into sustainable aviation fuel (SAF) and other biogenic products via catalytic fast pyrolysis (CFP) and hydrotreating

Key Advantage: Catalytic fast pyrolysis generates a stabilized bio-oil that de-risks transportation, storage, and down-stream hydroprocessing

Market Trends: Repurposing refinery hydroprocessing infrastructure for the production of renewable diesel and sustainable aviation fuel from fats, oils, and greases

Phillips 66: Rodeo, CA

Existing approach is constrained by the availability of waste fats, oils, and greases This research opens pathways for SAF production from forest resources and woody wastes

Estimated Availability of Forest Resources and Woody Wastes 133 Million Dry Tons/Yr 8 BGPY Hydrocarbon Fuel Potential

Approach

Fluidized Bed Ex-Situ Catalytic Fast Pyrolysis

- Opportunity to individually optimize reaction conditions for pyrolysis and catalytic upgrading steps
- Reduced exposure to biomass impurities prolongs catalyst lifetimes
- Can be performed using low-cost zeolite catalysts without requiring cofed hydrogen

Lack of end-to-end integrated data increases risk and uncertainty of process scale up

Catalytic Fast Pyrolysis

Feedstock: 50/50 Clean Pine + Forest Residues *Catalyst:* ZSM-5 SAR 30 with Alumina Binder *Biomass to Catalyst Ratio:* 1.7-2.5

Griffin, et al., Green Chemistry, Advanced Article, 2024 Iisa, et al., Fuel, 2017, 207, 413-422

	CFP-Oils		FP-Oil			
Oil Oxygen Content, wt% dry basis	17	20	48			
Mass Yields, wt%						
Oil	14.1	17.8	72.7			
Aqueous	28.9	27.3				
Condensables	5.0	5.6	-			
Gasses	28.9	28.7	12.3			
Char	12.9	13.1	9.2			
Coke	9.3	7.8	-			
Select CFP-Oil Properties						
H ₂ O, wt%	3.8	4.8	18			
CAN, mg KOH/g	19	29	76			

*FP-oil yield contains both organic and aqueous fractions

Hydrotreating

Hydrotreating at 385 °C produces a high-quality oil with oxygen levels below detection limits

Catalyst: Sulfided NiMo/Al₂O₃ **WHSV:** 0.2 h⁻¹ Experiments performed for a minimum of 72 h time on stream at steady state conditions

Griffin, et al., Green Chemistry, Advanced Article, 2024

Hydrotreating Results					
CFP-Oil Oxygen Content	17 wt%	20 wt%			
HT Carbon Efficiency	91%	92%			
Hydrogen Consumption	7%	8%			
HT-Oil Oxygen Content	<0.001 wt%	<0.001 wt%			
HT-Oil H:C Ratio	1.76	1.76			

Fractionation and Fuel Properties

>70 wt% Cycloalkanes in SAF Fraction

- Primary component in Jet A
- Increased energy density and cleaner burning than aromatics
- Difficult to access via other SAF pathways (HEFA, FT, ATJ)

Griffin, et al., Green Chemistry, Advanced Article, 2024

SAF Properties					
CFP-Oil Oxygen Content, wt% dry basis		17 wt%	20 wt%		
Density @15°C, 0.730-0.880 g/ml	\checkmark	0.854	0.843		
Flash Point >38 °C		41.5	41.5		
Freezing Point, <-40 °C		<-80	<-80		
Surface Tension 22°C, 25-29 mN/m ^b	\checkmark	28	27		
Lower Heating Value, >42.8 MJ/kg		42.5	42.7		
D86 Simdis T10 150-205 °C	\checkmark	162	162		
D86 Simdis FBP <300 °C	\checkmark	253	250		

Cycloalkane-rich SAF meets key ASTM D4054 quality guidelines

Modelled GHG Reduction Range: > 85%

2016 Dollars,

Griffin, et al., Green Chemistry, Advanced Article, 2024

LCA based on GREET analysis with petroleum jet fuel benchmark (88.7 g CO₂e/MJ)

Improving Carbon Efficiency

Biomass-to-SAF Sankey Diagram

Catalyst Modification Strategies

Van der Bij, H. E. et al. Chem. Soc. Rev. (2015)

Gao, L. et al. Bioresour. Technol. (2017)

Data represent normalized carbon yields for 20-0 samples

Biomass

Catalytic Pyrolysis Team

Kristiina lisa

Cody Wrasman

man

Mark Nimlos

Susan Habas

Michael Talmadge

Anne Starace

Trevor Smith (BETO) Steven Rowland (NREL) Calvin Mukarakate (NREL) Nolan Wilson (NREL) Abhijit Dutta (NREL) Joshua Schaidle (NREL) Fred Baddour (NREL) Brittney Petel (NREL) Nicole LiBretto (NREL) Matt Yung (NREL) Kellene Orton (NREL) Tyler Cary (NREL) Rianna Martinez (NREL)

Scott Palmer (NREL) Carson Pierce (NREL) Renee Happs (NREL) Earl Christensen (NREL) Robert McCormick (NREL) Alexander Rein (NREL) Andy Young (NREL) Xiaolin Chen (NREL) Cheyenne Paeper (NREL) Huamin Wang (PNNL) Fan Lin (PNNL) Kinga Unocic (ORNL) Biva Talukdar (ORNL)

Questions

www.nrel.gov

Michael.Griffin@nrel.gov

