SEPTEMBER 11, 2024 | TCBIOMASS 2024

Life-Cycle Greenhouse Gas Results of Fuels from Waste Streams and Biomass with the R&D GREET Model

Longwen Ou, Hao Cai, Michael Wang Systems Assessment Center Argonne National Laboratory

DEPARTMENT OF NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SAF and RNG play an important role in decarbonization of the transportation sector

 Decarbonization of the transportation sector requires liquid and gaseous low-carbon fuels that are produced from waste streams and biomass such as municipal solid waste, crop residues, forest residues, and wet wastes.

Source: https://www.epa.gov/Imop/renewable-natural-gas

LIS. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Figure 3. Analysis of Future Domestic and International Aviation CO₂ Emissions¹³

¹³ Analysis conducted by BlueSky leveraging R&D efforts from the FAA Office of Environment & Energy (AEE) regarding CO₂ emissions contributions from aircraft technology, operational improvements, and SAF.

 Sustainable aviation fuel (SAF) and Renewable Natural gas (RNG) offer great potential for decarbonization of the transportation sector.

Life-cycle analysis has been the basis for decarbonization programs to boost GHG emission reductions

Important to adequately estimate emissions for GHG emission reduction targets.

Major GHG Emission Programs			
International	ICAO's CORSIA		
Federal	Inflation Reduction Act US EPA's RFS		
States	CA: LCFS OR: Clean Fuels Program WA: Clean Fuels Program		
Other LCA- based programs	EU: RED II, Canada: Clean Fuel Regulations, Brazil: RenovaBio		

Life-cycle analysis (LCA)

ICAO: International Civil Aviation Organization CORSIA: Carbon Offsetting and Reduction Scheme for International Aviation EPA: Environmental Protection Agency RFS: Renewable Fuel Standard CA: California | LCFS: Low Carbon Fuel Standard OR: Oregon WA: Washington | EU: European Union | RED: Renewable Energy Directive

R&D GREET LCA Model

<u>Greenhouse gases, Regulated Emissions, and Energy use in Technologies</u>

- Tracks life cycle performance of energy and products
 - Used to inform and guide the Department of Energy research
- Argonne has been developing GREET since 1995 with annual updates and expansions.
- Long-term support from U.S. Department of Energy
 - Vehicle Technologies Office (VTO)
 - Hydrogen Fuel-Cell Technologies Office (HFTO)
 - Bioenergy Technologies Office (BETO)
 - Building Technologies Office (BTO)
 - ARPA-E
- Expanded from transportation-focus to include a wide range of technologies (Fuels, Vehicles, Chemicals, Plastics, Agriculture, Metals, Concrete, Buildings, Batteries, Electricity Infrastructure)

Argonne's GREET Model https://greet.anl.gov/

SAF Pathways in GREET

Conversion Technology	Feedstocks	Conversion Technology	Feedstocks
FT	Agricultural residues	SIP	Sugarbeet
	Forestry residues		Sugarcane
	Municipal solid waste		Agricultural residues
	Short-rotation woody crops		Forestry residues
	Herbaceous energy crops	AT Lissbutanal	Corn grain
HEFA	Tallow	ATJ-ISODULATION	Switchgrass
	Used cooking oil		Miscanthus
	Palm fatty acid distillate		Molasses
	Corn oil		Sugarcane
	Soybean oil		Corn grain
	Rapeseed oil		Agricultural residues
	Camelina	ATJ-ethanol	Forestry residues
	Palm oil		Switchgrass
	Brassica carinata		Miscanthus
	Sugarcane		Waste gases

FT: Fischer-Tropsch; SIP: Synthesized iso-paraffins;

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Ż

HEFA: Hydroprocessed esters and fatty acids; ATJ: Alcohol-to-jet

System Boundary: HEFA SAF

- Co-product handling method: process-level allocation
 - Oil extraction: Mass-based allocation
 - Hydroprocessing: energy-based allocation

System Boundary: Waste to RNG Pathways

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

GHG Emission Accounting in WTE Pathways

Fossil carbon

- CO₂ emissions; positive CO₂

Sequestered CO₂: carbon neutral
CH₄ emissions: CH₄ x GWP_{fossilCH4}

Biogenic carbon

- CO₂ emissions: carbon neutral
- Sequestered CO₂: negative CO₂
- CH₄ emissions: CH₄ x GWP_{bioCH4}
- Functional unit: MJ of fuel output
- Life-cycle GHG emissions considering the impact of avoided business-as-usual (BAU) case:

BAU Animal Manure Management in the United States

- Emissions from business-as-usual (BAU) management of various animal manure are modeled
 - Beef, dairy cow, dairy heifer, swine, layer, and broiler and turkey
- Manure management data are collected from different sources to estimate the emissions from manure management

BAU Animal Manure Management

State-level manure management data are included for various animal types and management practices.

BAU Wastewater Sludge Management in R&D GREET

Assumptions:

- Single-stage mesophilic AD
- Biogas yield from AD provides the onsite thermal demand; excess biogas is flared
- Purchased grid electricity to satisfy electricity demand

Flow diagram for counterfactual scenario of sewage sludge AD treatment in R&D GREET

Carbon Intensities Of Waste-to-RNG Pathways

- The GHG reduction benefits of SAFs compared to fossil-derived jet fuels are due to the CO₂ uptake of biomass feedstocks.
- In general, FT pathways have low conversion-related emissions, mainly because the process uses heat from syngas combustion (biogenic carbon emissions), except when the feedstock is MSW with nonbiogenic carbon.
- Feedstock has a considerable contribution to the life-cycle GHG emissions. Use of waste and residual feedstocks is key to achieve low-GHG aviation fuels.

Ref: Prussi et al. 2021. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels." Renewable and Sustainable Energy Reviews 150 (2021): 111398.

12

Carbon Intensities Of Waste-to-RNG Pathways

- The avoided BAU emissions greatly impact the carbon intensities of waste-to-RNG pathways.
- For animal manure pathways, the BAU emissions depend on the manure management practice and manure characteristics.
 - A large amount of methane is released from deep pit and liquid/slurry management, leading to significant GHG credits.

Summary

- Carbon cycle via photosynthesis provides key CO₂ benefits for SAF and RNG pathways.
- Counterfactual scenarios have significant impact on the carbon intensity of wasteto-RNG pathways.
 - Waste feedstock characteristics, regional parameters, and operational conditions affect the emissions from counterfactual waste management.
- R&D GREET includes dedicated SAF and RNG modules for LCA results of these pathways.
 - R&D GREET can be used to identify opportunities for further decarbonization.

Acknowledgements

System assessment center at Argonne

 The GREET research effort at Argonne National Laboratory was supported by several offices of the US Department of Energy (DOE) under contract DE-AC02-06CH11357, and other federal agencies including FAA and USDA.

Thank you!

Longwen Ou oul@anl.gov

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CI reduction through deep decarbonization

Life-cycle GHG emissions [gCO₂e/MJ of jet fuel]

Argonne 🍊

ATIONAL LABORATOR

Methane Leakage From Biogas Upgrading

- Raw biogas produced from AD contains CH_4 and CO_2
- CO₂ is separated in raw biogas upgrading to increase the CH₄ concentration
- In biogas upgrading, a fraction of CH_4 ends up in off-gas, leading to CH_4 loss

18

- CH₄ loss rate mainly depends on the separation technology:
- Pressure swing adsorption (PSA)
- Water scrubber

roonne National Laboratory is a ENERGY U.S. Department of Energy laborator managed by UChicago Aroonne 110 managed by UChicago Argonne, LLC

- Chemical (amine) scrubber
- Membrane

Ethanol-to-Jet

From first- and second-generation ethanol

Starch ethanol: 100 MMGal/yr Cellulosic ethanol: 15.60 MMGal/yr

- Corn grain and corn stover ethanol-to-jet pathways
- Comparing stand-alone and integrated corn grain + corn stover designs
- Evaluating measures for deep decarbonization of the ethanol-to-jet pathway.
 - NG to biomass/RNG
 - Renewable electricity
 - Low carbon farming

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Key parameters affecting feedstock CI

- Crop yield
 - Determines the material/energy inputs per kg oilseed
- Oil content in seed
 - Determines the amount of oil produced from an acre of land
- Farming inputs
 - Fertilizer/chemical use: embodied GHGs in fertilizers and chemicals and N2O emissions of N fertilizers
 - On-farm energy consumption in various farming activities (i.e. tilling, planting, fertilizing, harvesting, and drying)
- Farming practices
 - Conventional vs no tillage for field preparation
 - Manure vs synthetic fertilizer as nitrogen source

WTE Pathways Could Provide Significant GHG Reductions

- Wet wastes can be used for produce a variety of energy products (RNG, hydrocarbon fuels, etc.).
- LCA of WTE pathways should account for the emissions from business-as-usual (BAU) waste management that may be avoided when the waste is diverted to WTE.

Waste-to-Energy and Waste-to-Product Studies

