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SAF and RNG play an important role in decarbonization of the
transportation sector

= Decarbonization of the transportation sector =«
requires liquid and gaseous low-carbon fuels &
that are produced from waste streams and £

biomass such as municipal solid waste, crop
residues, forest residues, and wet wastes. ]
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Life-cycle analysis has been the basis for decarbonization programs to
boost GHG emission reductions

» Important to adequately estimate emissions for GHG emission reduction targets.

Major GHG Emission Programs

International ICAO’s CORSIA 4 s
| Intemational NI Y T
Inflation Reduction Act Ar Onne@ G R E E I
Federal US EPA's RES gonne .
LIFE-CYCLE MODEL

CA: LCFS
States OR: Clean Fuels Program

Life-cycle analysis

(LCA)

WA: Clean Fuels Program

Other LCA- . ICAO: International Civil Aviation Organization
: EU:RED I, . CORSIA: Carbon Offsetting and Reduction Scheme for International Aviation
based Canada: Clean Fuel Regulations, EPA: Environmental Protection Agency
Brazil: RenovaBio RFS: Renewable Fuel Standard
AogliElTkE CA: California | LCFS: Low Carbon Fuel Standard OR: Oregon
WA: Washington | EU: European Union | RED: Renewable Energy Directive
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R&D GREET LCA Model

Greenhouse gases, Regulated Emissions, and Energy use in Technologies

Argonne’s GREET Model

= Tracks life cycle performance of energy and products hitps://greet.anl, gov,

— Used to inform and guide the Department of Energy research

= Argonne has been developing GREET since 1995 with annual
updates and expansions.

= | ong-term support from U.S. Department of Energy
— Vehicle Technologies Office (VTO) ™ =B 6 ) ¥
— Hydrogen Fuel-Cell Technologies Office (HFTO)
— Bioenergy Technologies Office (BETO) Argonne G R E ET
— Building Technologies Office (BTO) LIFE-CYCLE MODEL
— ARPA-E

= Expanded from transportation-focus to include a wide range of
technologies (Fuels, Vehicles, Chemicals, Plastics, Agriculture,
Metals, Concrete, Buildings, Batteries, Electricity Infrastructure)
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SAF Pathwa s in GREET

Technolog Technolog

Agricultural residues S|P Sugarbeet
Forestry residues Sugarcane
FT Municipal solid waste Agricultural residues
Short-rotation woody crops Forestry residues
Herbaceous energy crops AT J-isobutanol qun grain
Tallow Switchgrass
Used cooking oil Miscanthus
Palm fatty acid distillate Molasses
Corn oil Sugarcane
Soybean oil Corn grain
HEFA : : )
Rapeseed oll Agricultural residues
Camelina ATJ-ethanol Forestry residues
Palm oil Switchgrass
Brassica carinata Miscanthus
Sugarcane Waste gases
FT: Fischer-Tropsch; HEFA: Hydroprocessed esters and fatty acids;
SIP: Synthesized iso-paraffins; ATJ: Alcohol-to-jet
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System Boundary: HEFA SAF

CO, via N,O

photosynthesis CO, CO, CO;

Carbon in
oilseeds

Carbon in
oil

Carbonin
jet fuel

Oil
Extraction

Hydropro-
cessing

Energy Energy

Energy

Fertilizer Chemicals — Chemicals

Co-products: [Oilseed Meal} [ Naphtha M Diesel Fuel M Fuel Gas }

= Co-product handling method: process-level allocation
— OQil extraction: Mass-based allocation
— Hydroprocessing: energy-based allocation
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System Boundary: Waste to RNG Pathways
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GHG Emission Accounting in WTE Pathways

= Biogenic carbon = Fossil carbon
— CO, emissions: carbon neutral — CO, emissions; positive CO,
— Sequestered CO,: negative CO, — Sequestered CO,: carbon neutral
— CH, emissions: CH, x GWP,,,c14 — CH, emissions: CH, x GWP;,.icha

= Functional unit: MJ of fuel output

= Life-cycle GHG emissions considering the impact of avoided business-as-usual (BAU)
case:

Cl [gCOZe/M]] _ <GHGproduction + GHGcombustion . GHGBAU\) X <Mwaste>

Myaste Myaste ) F
| ) | J \_Y_}
| |
Fuel Production/Use BAU (Avoided Emissions) Fuel Yield
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BAU Animal Manure Management in the United States

= Emissions from business-as-usual (BAU) management of various animal manure are modeled
— Beef, dairy cow, dairy heifer, swine, layer, and broiler and turkey

= Manure management data are collected from different sources to estimate the emissions from
manure management

. Waste Maximum CH4 Methane
Key Parameters: Chthl\::t:rriﬁcs plgviiotfokn Management Generation Conversion
P Share Potential Factor

Data Source: USDA USDA EPA EPA IPCC & EPA

Manure Management
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—_
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/

: . -
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BAU Animal Manure Management

Dairy Cow Swine
1.6%
= Pasture
1-2:;% = Daily Spread = Pasture
= Dry Lot
/ ! = Liquid/Slurry

= Solid Storage

= Liquid/Slurry = Anaerobic Lagoon

= Anaerobic Lagoon = Deep Pit

= Deep Pit

4.1%

State-level manure management data are included for various animal types
and management practices.
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BAU Wastewater Sludge Management in R&D GREET

= Assumptions:
— Single-stage mesophilic AD
— Biogas yield from AD provides the onsite thermal demand; excess biogas is flared

— Purchased grid electricity to satisfy electricity demand

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Biogas ]—E Boiler *{ Heat ]i

Flaring
Purchased | | | Digestate .
Electricity Digestate | Centrifuge Dewatered Digestate . Biosolid Landfill
Holding Tanks d Storage Tank " (EPAClass B)

H '
o o

Rejected Water

Flow diagram for counterfactual scenario of sewage sludge AD treatment in R&D GREET
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Carbon Intensities Of Waste-to-RNG Pathways

. . Agricultural residues 7.7 - I
= The GHG reduction beqeflts pf Forestry residues 5.3 [N |
SAFs compared to fossil-derived . Msw (0% NBC) 5.2 I :
) . msw (40% NBC) 73.4 NI
jet fuels are due to the CO, Short-rotation woody crops 12.2 [N 1 _ |
uptake of biomass feedstocks. Herbaceous energy crops 10.4 [N :Ez:gz:zz:::l;::::s;;g: collection _
Tallow 22.5 — m Feedstock-to-fuel production gl
Used cooking oil 13.9 [N Fuel transportation &
= In general, FT pathways have Palm fatty acid distllate 20.7 | il combystion !
. C il ] _
low conversion-related < Soyb:.‘:: Z:I ‘1‘;‘21 P % I
emissions, mainly because the : Rapeseed oil 47.4 [N EI
Camelina 42 [N o
process uses heat from syngas Paim ol (closed pond) 37.4 I 21
combustion (biogenic carbon Paim oil (open pond) 60 NN . T |
. . Brassica carinata 34.4 [N ::l
emissions), except when the & sugarcane 32.3 [N N =
feedstock is MSW with non- 2 :usarbeet 324 N q§) I
. . ugarcane 24 [N =
blogenIC carbon. g Agricultural residues 29.3 [NV g |
g Forestry residues 23.8 — o I
) 3 Corngrain 558 NN |
= Feedstock has a considerable 8 Herbaceous energy crops 434 [N I
contribution to the life-cycle Noksses 27— I
.. - ugarcane 24.1 [N
GHG emissions. Use of waste G Comngrain ¢5.7 | [
and residual feedstocks is key to 0 20 a0 60 80
achieve low-GHG aviation fuels. Core LCA values{ gCOe/M) |

Ref: Prussi et al. 2021. CORSIA: The first internationally adopted approach to calculate life-cycle GHG
emissions for aviation fuels." Renewable and Sustainable Energy Reviews 150 (2021): 111398.
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Carbon Intensities Of Waste-to-RNG Pathways

150
» The avoided BAU 100
emissions greatly impact §
the carbon intensities of B, 50
waste-to-RNG pathways. 8 0
en
0
= For animal manure é -50
pathways, the BAU @ 100
emissions depend on the g
manure management o 150
practice and manure % 200
characteristics.
» Alarge amount of -250
methane is released Dry Lot Deep Pit Pasture Liquid/Slurry Deep Pit g?::;zgi:
from deep plt and Dairy Manure Swine Manure WWTP Sludge
liquid/slurry
man_a gement’ . Estﬁe?:r:ebcf\};or; benefits = i\,;loci;dergﬂas:gir;sions/Forgone BAU credits
leading to significant mmss AD for RNG production m— Total
GHG credits. = = FossilNG
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Summary

= Carbon cycle via photosynthesis provides key CO, benefits for SAF and RNG
pathways.

» Counterfactual scenarios have significant impact on the carbon intensity of waste-
to-RNG pathways.
— Waste feedstock characteristics, regional parameters, and operational conditions
affect the emissions from counterfactual waste management.
» R&D GREET includes dedicated SAF and RNG modules for LCA results of these
pathways.
— R&D GREET can be used to identify opportunities for further decarbonization.
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CHP: combined heat and power | RNG: renewable natural gas
CCS: carbon capture and sequestration | SOC: soil organic carbon

—
i e e S B It CUTEE EEEEEFEETRES
S
c 2 “
= ~ o ONY
o 2 3
N ‘m
-
© = © 2 © seb |en
N 3 o} < ~ [en4
u — N I ©
c 3
S »
<
Td 0 0]
o " 2 o Sseboig
O 2 ™
r .w ||||||||||||||||||||||||||||||||||||||||||||||||||||
c W @ = © dHO pue Al
O o w _ i 8uIgJn] PUIpA
y o) O e
I N ~ ~
o, © I —q_u « SIshjonosle °H
2 ©
Q S S
O 9 3
<
T ¢ FOOEEE e
-l N~
L q
S
o) © |[enjier N
> =25 o =
3 S wnajoned o]
o B
. w
C 8 8 8 % 8 ° § §5 g
A < o
QO [} Z
c g > 2
= ®©
(@) g 8 g 5 2
o L = Q
™ — g g~ o822 _ g E
o S EZc®FEiecfe
L ] i) n .= = c = - wwm
= = = gE g
= 55625338k =z2
u u HE 5 E e H
() >
b 2
& ®


https://pubs.acs.org/doi/full/10.1021/acssuschemeng.2c00977

Methane Leakage From Biogas Upgrading

Raw biogas produced from AD contains CH, and CO,

CO, is separated in raw biogas upgrading to increase the CH, concentration

In biogas upgrading, a fraction of CH, ends up in off-gas, leading to CH, loss

CH, loss rate mainly depends on the separation technology:

» Pressure swing adsorption (PSA)
» Water scrubber

» Chemical (amine) scrubber

» Membrane

Off—gas CH, leakage during
biogas upgrading
co,
Raw biogas RNG
Biogas
0,
CO, Upgrading Chi,

CH,
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Ethanol-to-Jet

From first- and second-generation ethanol

= Corn grain and corn stover
ethanol-to-jet pathways

» Comparing stand-alone and
integrated corn grain + corn
stover designs

» Evaluating measures for
deep decarbonization of the
ethanol-to-jet pathway.

— NG to biomass/RNG
— Renewable electricity
— Low carbon farming

%%, S DEPARTMENT OF  Argonne
(%) ENERGY (75

Cellulosic ethanol: 15.60 MMGal/yr

Fermentation vent I DDGS and Corn ail

Corn grain

Beer | Product

—»  Dry mill » Liguefaction » Pretreatment Fermentation > :
separation
Fermentation vent
Ei
l nzyme Starch ethanol
Corn stover Feed Enzymatic
—] . —>| Pretreatment » hydrolysis and
handling : SAF & other
fermentation ; , OIner
Cellulosic hydrocarbon
Product ethanol Ethanol to
recovery g S
T upgrading
Vent il l Lignin
i Lights (C2-C5
Wastewater Blogas‘ Boiler and < onts ¢ :
treatment "1 Turbogenerator |
Sludge T Natural gas
Combustor stack > Utility AEEE— Ele_ctrlcn:y
(grid/renewable)
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Key parameters affecting feedstock Cl

= Crop yield
— Determines the material/energy inputs per kg oilseed

= Oil content in seed
— Determines the amount of oil produced from an acre of land

= Farming inputs
— Fertilizer/chemical use: embodied GHGs in fertilizers and chemicals and N20
emissions of N fertilizers
— On-farm energy consumption in various farming activities (i.e. tilling, planting, fertilizing,

harvesting, and drying)

= Farming practices
— Conventional vs no tillage for field preparation
— Manure vs synthetic fertilizer as nitrogen source
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WTE Pathways Could Provide Significant GHG Reductions

= \Wet wastes can be used for produce a variety of energy products (RNG, hydrocarbon
fuels, etc.).

» LCA of WTE pathways should account for the emissions from business-as-usual (BAU)
waste management that may be avoided when the waste is diverted to WTE.

Avoidance
(Negative)

GHG emissions iti
WTE l : Positive
Fuels

WTE Pathways

Animal waste }— > AD »  Upgrading -—-»m
MSW .
> Fermentation > Ethanol
.
Wastewater sludge > HTL =a Hydrocarbon fuel
(D ENERGY (2uimssih /
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Waste-to-Energy and Waste-to-Product Studies

Wastewater

Landfill Gas

~
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Argonne Nt

Well-to-Wheels Analysis of Landfill Gas-Based
Pathways and Their Addition to the GREET Model
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Waste-to-Energy

Animal Waste

Renewable Natural Gas Pathways with the GREET Model
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Lifecycle Analysis of Renewable Natural Gas
and Hydrocarbon Fuels from Wastewater
Treatment Plants’ Sludge

Energy Systems Division

Journal of Cleaner Production
Volume 382, Jonuory 2023, 15114

Life cycle analysis of gasification and
Fischer-Tropsch conversion of municipal
solid waste for transportation fuel
production
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Life cycle analysis of renewable natural gas
and lactic acid production from waste
feedstocks
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