
Co-processing wet waste 
hydrothermal liquefaction 

crudes with petroleum 
streams in refinery 

hydroprocessing

Huamin Wang, Daniel M. Santosa, Igor 
Kutnyakov, Yuan Jiang, Mike Thorson

Pacific Northwest National Laboratory



2

1 billion dry tons of potentially available biomass in 
2030+ for the hard-to-electrify transportation sector

BETO 2023 peer review

• Focusing on SAF and 
other strategic 
transportation fuels

• Unlocking the potential 
of the full range 
renewable carbon 
resources

• Leveraging existing 
industrial infrastructure 
supply chains  



Transforming Wet Wastes to Liquid Fuels by 
Hydrothermal Liquefaction (HTL) and hydroprocessing

• Conceptually simple (i.e., heated pipe), 
continuous process

• High carbon yields to liquid hydrocarbons
• Tolerates dirty, wet feedstocks 

Benefit #1: Potential for ~6 billion     
gallon/year of fuel in the U.S. 

Benefit #2: Alternative disposal processes

PNNL’s HTL 
Process 
Development 
Unit (PDU)

12-18 L/h slurry 

330-350 oC
20 MPa

10-30 min

Hydroprocessing

60% C to biocrude

95+% C to fuels

HTL
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SAF via HTL of wet wastes meets Tier α and β specs

• ~25% of upgraded fuel in the jet range
• Similar mix of cycloalkanes, n-alkanes, iso-

alkanes, and aromatics to traditional jet
• Cycloalkanes and aromatics necessary 

to allow higher fuel penetration 
• Positive Tier α and β jet fuel properties



Hydroprocessing in refinery can co-process biocrudes

An example of a petroleum refinery

• Hydrotreating removes heteroatoms (S, N, O) and hydrocracking converts heavy gasoils into lighter fuel blends
• Hydrogen addition to prevent carbon rejection
• Fixed-bed operation, long catalyst lifetime, high pressure
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The key challenges include N-containing species

VGO Bio-
crude

H/C 1.6-1.7 ~1.5
O

wt% 0.1-1.0 ~2-8
S

wt.% 0.1-2.5 ~0.5
N

wt.% 0.1-2 ~5
H2O
Wt.% <0.05 ~1-5

High nitrogen content 
from protein 

 

Major Challenges

• Deep N removal to meet SAF specification
 High nitrogen content in jet fraction after direct biocrude 

hydrotreating (Nitrogen: ~2000ppm)
  All approved SAF pathways have a nitrogen spec of 2ppm
 Thermal stability concerns due to potential Nitrogen-Sulfur 

interactions 

• Deep N removal to enable hydrocracking and co-processing
 Hydrocracking of heavier-than-jet fraction to increase jet yield
 Co-processing biocrude with refinery hydroprocessing with 

minimal impact to hydroprocessing chemistry



Deep HDN is required

• Biocrude is rich in pyrazines, pyrroles, amides, 
indoles, etc. as identified via GC/GCMS

Foodwaste    Sludge

Biocrude

~60,000 ppm

Hydrotreated biocrude

~5,000 - 10,000 ppm

• Deep HDN is required to further reduce N



Kinetic study to identify the most challenging species 

Biocrude introduce new N containing species Hydrodenitrogenation is slow 

C. Zhu,… H. Wang, Applied Catalysis B: Environmental, 2022, 307, 121197                 

• Biocrude introduce some unique N containing species, but the indoles 
and quinolines are still the most refractory compounds

• A kinetic-based reactor model for co-processing enables predictive 
capabilities and optimization for reactor configuration and operation 
conditions
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Deep HDN achieved with commercial catalysts

Gas yield is below 3% at the most severe 
conditions (400 oC and 0.5 h-1 WHSV)

Both temperature and WHSV play a big role in 
deep nitrogen reduction

Achieving <1 ppm N at various conditions using extrudate catalysts

• Preliminary TEA indicated an anticipated additional processing cost of <$0.05/gal for deep HDN

Sim-dist



Deep HDN of heavier-than-jet fraction enables hydrocracking

Hydrocracking of heavier-than-jet fraction

• Deep HDN of heavier than jet fraction, leading to 20-200 ppm N in product, enables hydrocracking 
using commercial zeolite containing catalysts

• Potential for a100% increase in jet fuel yield from biocrude

After deep HDN

~45% 
in jet 
fraction



Hydroprocessing in refinery can co-process biocrudes

An example of a petroleum refinery

• Hydrotreating removes heteroatoms (S, N, O) and hydrocracking converts heavy gasoils into lighter fuel blends
• Hydrogen addition to prevent carbon rejection
• Fixed-bed operation, long catalyst lifetime, high pressure
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• High N in biocrude leads to competition among heteroatom (S, N, O) removal when co-processing
• A hydrotreating step is required to mitigate N issues of biocrude and enable co-processing in hydrocracking
• High biogenic carbon incorporation and improved diesel fuel quality through co-processing biocrude

VGO only 5.7/100 HTL/VGO

Cetane Number 42 47
S, ppm <15 <15
N, ppm 30 93

Biogenic C, % (AMS) 7.3
(~60% of total bio-C)

Improved diesel (184-350 oC) quality

used used

used used

95+% Biogenic carbon incorporation demonstrated for the HTL biocrude 

Bio-
crude VGO

H/C ~1.5 1.6-1.7

O ~2-8 0.1-1.0

S ~0.5 0.1-2.5

N ~5 0.1-2

H2O ~1-5 <0.05

M. Santosa, … H. Wang, Manuscript in preparation

95+% 
biogenic carbon incorporated into fuels
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Tuning biogenic carbon distribution in co-hydrocracking

• Deep HDN in VGO + biocrude hydrotreating enables hydrocracking using the conventional 
zeolite-containing catalyst for a greater yield of jet and diesel range fuels

• Biogenic carbon is largely incorporated into the mid-distillate range fuel (jet and diesel)
• Biocrude is less sensitive than VGO on the hydrocracking severity

H. Wang, Manuscript in preparation
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We evaluate co-processing of bio-liquids in various hydroprocessing units

Diesel
HT

VGO
HT

VGO
HC

Fuel oil
HT

Kerosene
HT

Woody FP 
bio-oil

Woody CFP 
bio-oil

Sludge HTL 
biocrude

Hydrotreated 
HTL biocrude

Synergy enables 
deep HDN (<1 
ppm N for SAF)

• Instability requires 
pre-stabilization

• High water and O 
• Low (~70%) bio-

carbon incorporation 
into fuel

• Strong N inhibition of HT 
chemistry

• Mild impact on HT 
chemistry

• High (80-95%) bio- 
carbon incorporation 
into fuel

• Water, O, long-term 
“coke” formation

More challenge Less challenge More data needed

• Enable N and S reduction
• Issues in homogeneity

• HT pretreatment to 
mitigate N issue

• High (>95%) bio-carbon 
incorporation into fuel

• Increased fuel quality
• Faster catalyst 

deactivation at long-term

• The feasibility of co-processing bio-oil 
and biocrude feedstocks with different 
petroleum streams in hydroprocessing 
greatly depends on their heteroatom 
content and speciation
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HDN to meet SAF requirement and enable co-processing

Petroleum 
Feedstock

H2

Fuel blendstocks with
biogenic carbon incorporation 
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Deep HDN
• Biocrude introduce some unique N containing species, but the 

indoles and quinolines are still the most refractory compounds
• Deep HDN using commercial catalyst can reach <2  ppm N in 

SAF, meeting SAF specification
• Deep N removal to enable hydrocracking heavier-than-jet 

fraction to increase jet yield

Co-processing biocrudes in hydroprocessing have great potential
• High biogenic carbon incorporation
• HDN addresses high N challenges
• Co-processing can offer benefits to both the biorefinery and the 

refinery
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