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1 billion tons of biomass, ~62 B GGE of biofuels
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AEO = annual energy outlook | GGE = gasoline gallon equivalent | MSW = municipal solid waste

1 billion dry tons of potentially available biomass in
2030+ for the hard-to-electrify transportation sector

* Focusing on SAF and

other strategic
transportation fuels

» Unlocking the potential

of the full range
renewable carbon
resources

* Leveraging existing

industrial infrastructure
supply chains
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Transforming Wet Wastes to Liquid Fuels by
Hydrothermal Liquefaction (HTL) and hydroprocessing

- 60% C to biocrude

B

Heat &
Pressure

HTL

330-350 °C
20 MPa
10-30 min

- Hzo

- Gas

- Solids

H,

Hydrotreating

H-0,
Sulfur,
Nitrogen

Biocrude

95+% C to fuels

Hydroprocessing

Gasoline

Jet Fuel

-

Diesel

« Conceptually simple (i.e., heated pipe),
continuous process

« High carbon yields to liquid hydrocarbons
» Tolerates dirty, wet feedstocks

Benefit #1: Potential for ~6 billion
gallon/year of fuel in the U.S.

Benefit #2: Alternative disposal processes

" PNNL’s HTL
Process

ol Development
,'-‘.‘i‘ - Unit (PDU)

~' 12-18 L/h slurry



\%/ SAF via HTL of wet wastes meets Tier a and 8 specs
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~25% of upgraded fuel in the jet range

» Similar mix of cycloalkanes, n-alkanes, iso-
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» Cycloalkanes and aromatics necessary
to allow higher fuel penetration
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\%/ Hydroprocessing in refinery can co-process biocrudes
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An example of a petroleum refinery Hydroprocessing Feedstock

Isomerate

Hydrothermal
Liquefaction
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Hydrotreating removes heteroatoms (S, N, O) and hydrocracking converts heavy gasoils into lighter fuel blends
Hydrogen addition to prevent carbon rejection

Fixed-bed operation, long catalyst lifetime, high pressure
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High nitrogen content

from protein

veo o
HC 1617 ~15
o 0410 ~2-8
Wy 0425 ~0.5
o 042 =5
a0 <005 ~1-5

Major Challenges

Deep N removal to meet SAF specification

= High nitrogen content in jet fraction after direct biocrude
hydrotreating (Nitrogen: ~2000ppm)

= All approved SAF pathways have a nitrogen spec of 2ppm

= Thermal stability concerns due to potential Nitrogen-Sulfur
interactions

Deep N removal to enable hydrocracking and co-processing
= Hydrocracking of heavier-than-jet fraction to increase jet yield

= Co-processing biocrude with refinery hydroprocessing with
minimal impact to hydroprocessing chemistry



\ﬁ/ Deep HDN is required
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% Kinetic study to identify the most challenging species
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Achieving <1 ppm N at various conditions using extrudate catalysts
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Gas yield is below 3% at the most severe

conditions (400 °C and 0.5 h-' WHSV)

« Preliminary TEA indicated an anticipated additional processing cost of <$0.05/gal for deep HDN



\*/ Deep HDN of heavier-than-jet fraction enables hydrocracking
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» Deep HDN of heavier than jet fraction, leading to 20-200 ppm N in product, enables hydrocracking
using commercial zeolite containing catalysts

» Potential for a100% increase in jet fuel yield from biocrude



\%/ Hydroprocessing in refinery can co-process biocrudes
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An example of a petroleum refinery Hydroprocessing Feedstock

Isomerate

Hydrothermal
Liquefaction

® .
5 T _Refomate 2 HydroDeSl:lIfurlza tlo_n Biocrude
cruce E _ reformer [N % HydroDeNitrogenation
ol [= Merox or O HydroDeOxygenation
:E Hydrotreater Diosel % Hydrocracked Gasoline H
§' g Hydrocracked Jet z C F P
E 8 . AN : i0-0i
b s Hydrocracked Diesel R-CH,-X-CH,-R R-CH; + CH;-R” + H X BIO'OII
.3 X:S,N, 0
. i-Butane | . Alkylate \
\__ Atmospherid Butenes | LAliEUE)
Gasail Pentenes .
o Hydrocracking Fast Pvrolvsi
© Light L—vp | ﬁ Hydrotreater H, ast Fyrolysis
s g Vacuu.m — ] E | v
g2 S2soil S8 Fee R-CHZ—:—CHZ-R'l—» R-CH, + R'-CH,
E m ! 20 .
= Heavy = Hydrotreater l
€5 Vacuum -
R Gasoll
§ = Coker F ue I
(=] Gasoline and Gasoil Blendstocks

Vacuum Resid Coke

Hydrotreating removes heteroatoms (S, N, O) and hydrocracking converts heavy gasoils into lighter fuel blends
Hydrogen addition to prevent carbon rejection

Fixed-bed operation, long catalyst lifetime, high pressure
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\%/ 95+% Biogenic carbon incorporation demonstrated for the HTL biocrude

biogenic carbon incorporated into fuels

Improved diesel (184-350 °C) quality

5.71100 HTL/VGO

47
<15
93

7.3
(~60% of total bio-C)

M. Santosa, ... H. Wang, Manuscript in preparation

« High N in biocrude leads to competition among heteroatom (S, N, O) removal when co-processing
* A hydrotreating step is required to mitigate N issues of biocrude and enable co-processing in hydrocracking
» High biogenic carbon incorporation and improved diesel fuel quality through co-processing biocrude



\%/ Tuning biogenic carbon distribution in co-hydrocracking
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* Deep HDN in VGO + biocrude hydrotreating enables hydrocracking using the conventional
zeolite-containing catalyst for a greater yield of jet and diesel range fuels

» Biogenic carbon is largely incorporated into the mid-distillate range fuel (jet and diesel)
» Biocrude is less sensitive than VGO on the hydrocracking severity

H. Wang, Manuscript in preparation



\%/We evaluate co-processing of bio-liquids in various hydroprocessing units
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\% HDN to meet SAF requirement and enable co-processing

Pacific
Northwest
H, Deep HDN
Petroleum — Biocrude « Biocrude introduce some unique N containing species, but the
Feedstock - : T :
indoles and quinolines are still the most refractory compounds

) « Deep HDN using commercial catalyst can reach <2 ppm N in
SAF, meeting SAF specification

 Deep N removal to enable hydrocracking heavier-than-jet
fraction to increase jet yield

Hydrotreating or
Hydrocracking

Co-processing biocrudes in hydroprocessing have great potential

N « High biogenic carbon incorporation
1  HDN addresses high N challenges
Fuel blendstocks with « Co-processing can offer benefits to both the biorefinery and the

biogenic carbon incorporation refinery
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