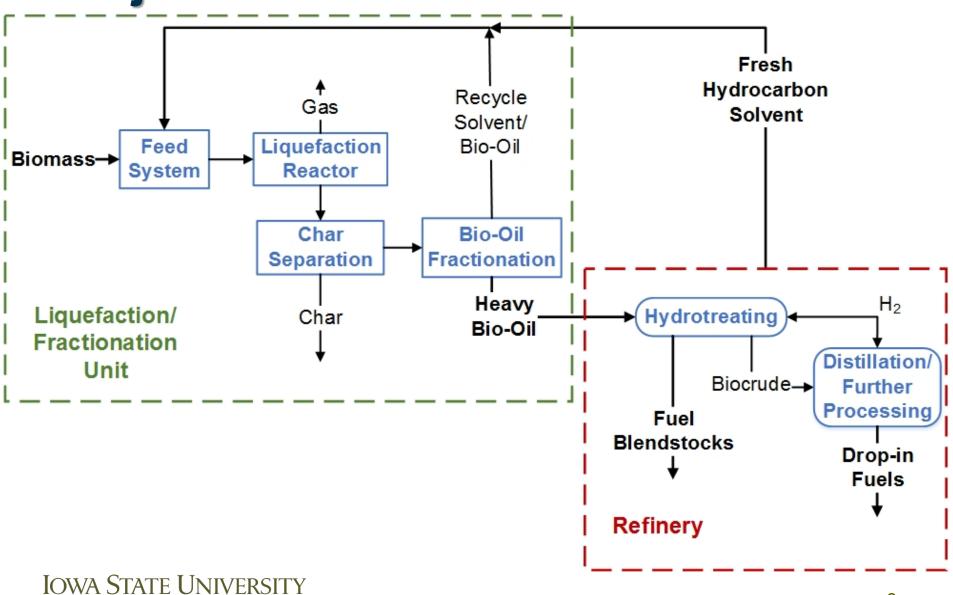
IOWA STATE UNIVERSITY Bioeconomy Institute

Recent Advancements of a Solvent Liquefaction Pilot Plant

Lysle E. Whitmer and Robert C. Brown Iowa State University Bioeconomy Institute

Nikos Montesantos, Christian Ejersbo Strebel and Joachim Bachmann Nielsen Kvasir Technologies

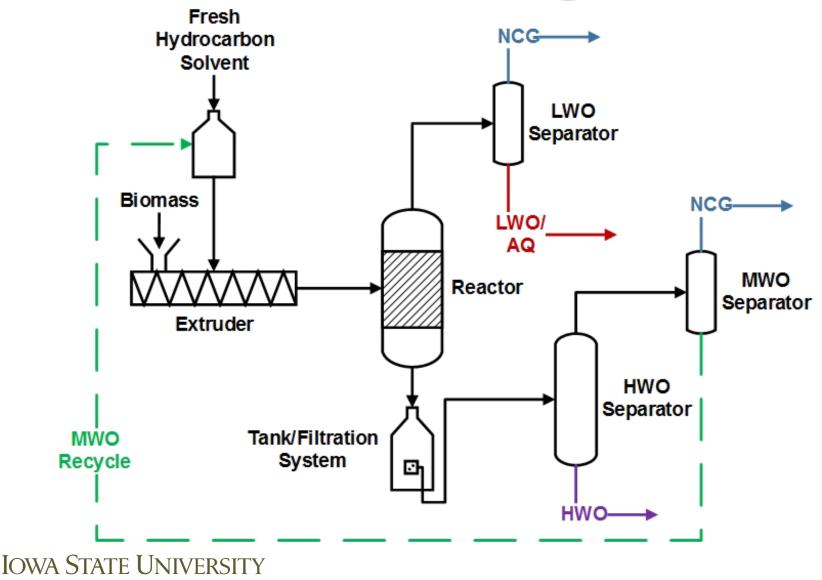

September 11, 2024

Project Background

- Chevron & Iowa State University
 - Department of Energy BRDI Grant: DE-EE0005974
 - Biomass to "green crude" to gasoline and diesel drop in fuels
 - Solvent Liquefaction in a hydrocarbon solvent
- Project Benchmarks
 - Convert biomass with 50% bio-oil yield
 - Generate bio-oil with oxygen content <20 wt. %
 - Recycle wood oil product for use as solvent, displacing initial hydrocarbon solvent
 - Bio-oil hydroprocessing to biocrude (<2 wt. % oxygen)

IOWA STATE UNIVERSITY Bioeconomy Institute

Project Overview



Bioeconomy Institute

Definition of Terms

Initialism	Name	Primary Components		
SCLU	Small continuous liquefaction unit	_		
NCG	Non-condensable gases	CO, CO ₂ , CH ₄		
AQ	Aqueous products	Fed/product H ₂ O and light acids		
LWO	Light wood oil	Lighter phenolic monomers and solvent components		
MWO	Medium wood oil	Phenolic monomers and solvent		
HWO	Heavy wood oil	Heavier solvent components and phenolic monomers, phenolic oligomers, sugars		

SCLU Block Flow Diagram

Bioeconomy Institute

SCLU and Process Conditions

LWO

Separator

Reactor

Tank/

Filtration

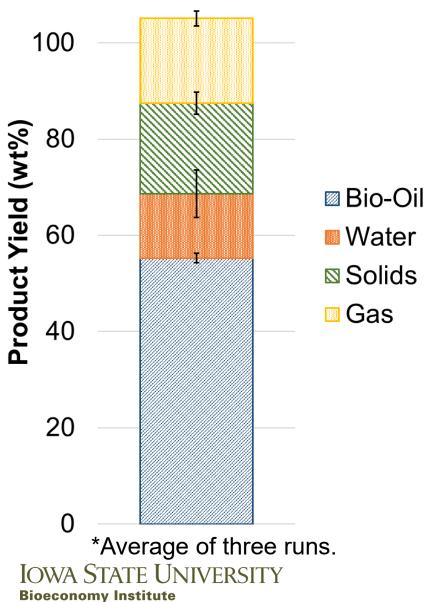
Biomass Feed Rate0.5 - 1 kg/hSolvent Feed Rate2 - 4 kg/hTemperature280 - 400 °CPressure27 - 48 barResidence Time~20 min

HWO Separator

Separato

IOWA STATE UNIVERSITY Bioeconomy Institute

Biomass Characterization



Proximate Analysis (wt. %)				
Moisture	~5			
Volatiles (AF/MF)	84.4			
Fixed Carbon (AF/MF)	15.6			
Ash (MF)	3.71			

Ultimate Analysis (wt. %, AF/MF)					
С	52.0				
Н	5.37				
0	42.6				
Ν	0.05				
S	0.02				

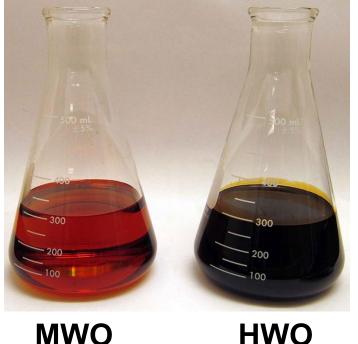
IOWA STATE UNIVERSITY Bioeconomy Institute

Hydrocarbon Solvent Processing

- Three continuous liquefaction experiments with fractionation for >4 h
- Retention of char particles in mixing tank via barrier filtration
- Sufficient selectivity to MWO to close recycle loop at 25% makeup solvent – more expensive test case

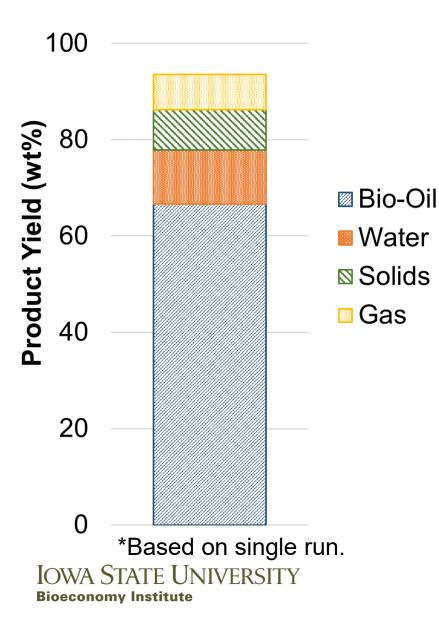
Liquefaction Metrics Bio-Oil Yield (wt. %)^a 55.3

^aSolvent-less, dry biomass basis


Hydrocarbon Bio-Oil Analysis

Sample	LWO	MWO	HWO		
Moisture (wt. %)	1.08	0.76	0.914		
Elemental Analysis (wt. %, MI/AF)					
С	86.4	86.7	88.0		
Н	7.80	7.25	6.93		
Oa	5.43	5.75	4.69		

^aDetermined by difference


Bioeconomy Institute

- MWO mix of hydrocarbon solvent, phenolic monomers/oligomers, and biopolymers
- HWO viscous liquid at room temperature
 IOWA STATE UNIVERSITY

MWOHWOProductProduct

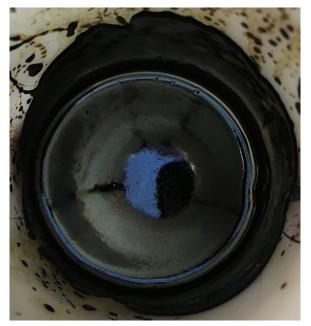
Phenolic Solvent Processing

- Solvent mix simulates expected composition for full recycle operation with 5% makeup solvent
- Phenolic solvent generated smaller char particles requiring offline separation
- Insufficient selectivity to MWO to close recycle loop at these conditions

Liquefaction Metrics

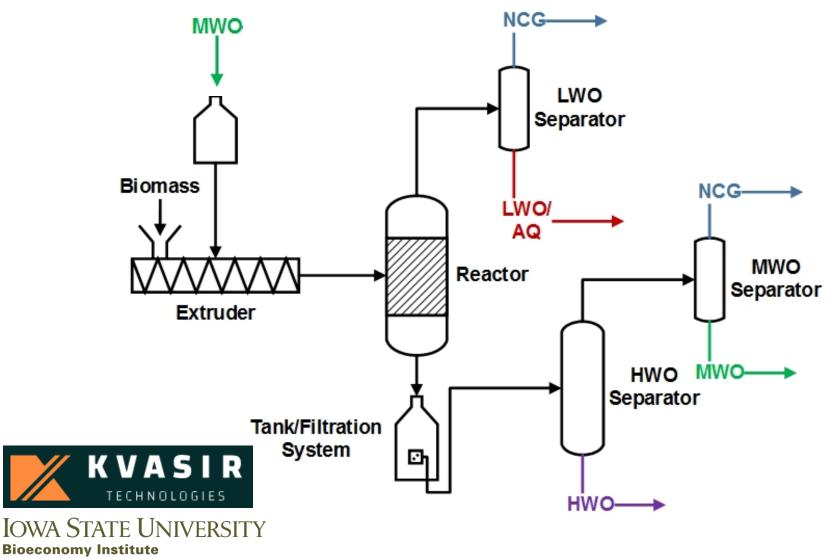
Bio-Oil Yield (wt. %)^a 66.7

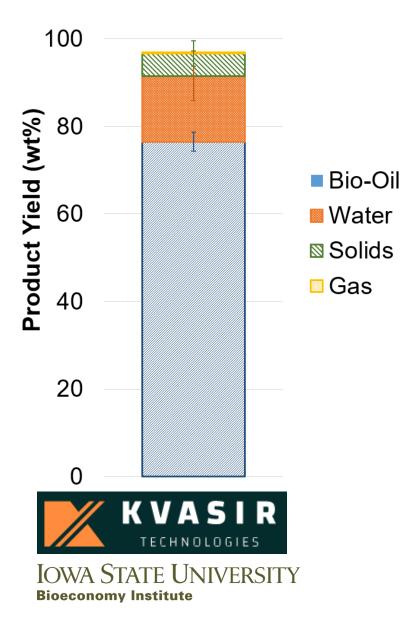
^aSolvent-less, dry biomass basis


Phenolic Bio-Oil Analysis

Sample	LWO	MWO	HWO
Moisture (wt. %)	1.48	0.208	2.53
Elemental Analy	⁻ /AF)		
С	73.0	73.3	83.7
Н	6.42	5.98	5.76
Oa	20.2	20.3	10.3

^aDetermined by difference


- MWO mix of phenolic monomers/oligomers and biopolymers, some hydrocarbon
- HWO solid at room temperature with melt point ~80 °C



HWO Product

Once-Through MWO Processing Project conducted with Kvasir Technologies

Neat Phenolic Solvent Processing

- Solvent mix simulates potential composition for full recycle operation with MWO
- Phenolic solvent generated low yields of very fine char particles with very little gas production
- Over 96% conversion to liquids and gases demonstrated

Liquefaction Metrics

Bio-Oil Yield (wt. %)^a 76.5

^aSolvent-less, dry biomass basis

Summary and Future Work

• Summary

- Demonstrated increased conversion/yield with MWO solvent during continuous liquefaction of pine with high selectivity to liquid products
- Achieved >96% biomass conversion and ~76.5 wt. % bio-oil yield

Future Work

- Conduct separation and product analysis
- Contents intended to serve as subject matter for publication
- Conduct additional trials using MWO obtained from separation process, implementation of MWO direct recycle

IOWA STATE UNIVERSITY Bioeconomy Institute

Acknowledgements

- Bioeconomy Institute Research Staff
 - Robert Brown
 - Sarah Whitmer
 - Patrick Johnston
- Kvasir Technologies
 - Joachim Bachmann Nielsen
 - Nikos Montesantos
 - Christian Ejersbo Strebel

References

 Haverly, M. R., Schulz, T. C., Whitmer, L. E., Friend, A. J., Funkhouser, J. M., Smith, R. G., Young, M. K., & Brown, R. C. (2018). Continuous solvent liquefaction of biomass in a hydrocarbon solvent. *Fuel*, *211*. https://doi.org/10.1016/j.fuel.2017.09.072

Questions?

