

IH² – For Direct Conversion of Biomass to Fuels- 200t/day Plant Economics and Plans

Terry Marker and Pedro Ortiz-Toral GTI Energy tcbiomass2024 September 12, 2024

What is IH^{2®} technology?

An Innovative Process

- Directly converts solid biomass into liquid hydrocarbon fuels
- Removes all oxygen from the feed and generates high quality gasoline +jet+ diesel boiling range fuels
- Economic at scales relevant to biomass availability (>100 tpd)
- Gives the highest GPT yield of oxygen free transportation fuels of any biomass conversion process
- Can be used to sequester carbon by sequestering char
- Invented by GTI Energy, tested and currently licensed to Shell

Hydropyrolysis Reactor and Chemistry

Biomass travels through a bed of catalyst and is converted to char and hydrocarbons which are continuously produced

IH² adds hydrogen directly to biomass fragments

Liquid Yields Comparison

- Gasification + Synthesis yield from "U-GAS+Cool GTL", Tcbiomasss 2022, Zach El Zahab
- Catalytic Pyrolysis yield from "Critical Review of Fast Pyrolysis of Biomass", Vanderbosch

Liquid Product Quality Comparison

Pyrolysis Oil 50% Oxygen 100-200 TAN 20% water Non distillable Poor stability Heating value 6560 btu/lb. Hardest to upgrade

Catalytic Pyrolysis oil

10-20% oxygen 40 TAN Less water Better Stability Heating value=8500btu/lb. Hard to upgrade

IH² Fuels <1% Oxygen <.1TAN No water Excellent stability Heating value=18000BTU/lb. No upgrading needed

Comparison of IH² and Catalytic Pyrolysis

	IH ^{2®}	Catalytic Pyrolysis	
Analogous process	Hydrotreating	FCC	
Temperatures, C	380-450	500-600	
Pressure, barg	20-35	1.5-2	
Hydrogen	Yes	No	
Regeneration	No	Yes	
Catalyst type	hydrotreating	cracking	
% oxygen in the product liquid	<0.4%	10-20%	
Requires product upgrading	No	Yes	
Liquid Yield GPT	86	40	

Comparison of IH² and Gasification

	IH ² with Char sequestration	lH ² with burn char	Gasification + synthesis
GPT Liquid Yield	86	86	57
Ton CO ₂ product per ton of feed	.47	.99	1.3
Power usage MW/1000tpd feed	27	7	13.9
% of feed carbon to CO ₂	25	54	71
% of feed carbon to liquid	46	46	29
% of feed carbon to char	29	0	0
% feed carbon to liquid+char	75	46	29

- Gasification sacrifices a high amount of carbon to CO₂
- IH² with Char sequestration produce least CO₂

IH² 50kg/day Pilot Plant

Over 13,000 Hours of IH² pilot plant testing

Bangalore India Demonstration Scale IH² Plant (Shell)

- GTI Energy supported the design and commissioning of a pre-commercial 5 ton/day demonstration unit located at <u>Shell Technology Center in Bangalore,</u> India (STCB), pictured on right
- Demo: Accumulated 3,000 hrs in 2022-23 (5 ton/day)
- Yields consistent with pilot results
- Signed off on engineering design package for commercial scale

>200,000L/day IH²-1000tpd

2026+

Development Scale-up

Time and Scale

Latest Innovation—Integrated Electric Reformer for Hydrogen Production

- Simple robust compact low-cost modular design approach for hydrogen production
- Catalyst designed to accept and convert bio-derived gases
- Integrated with IH² pilot demonstrated hydrogen self sufficiency

Novel Cool Electric-Reformer Makes Hydrogen or Synthesis gas

TCBIOMASS | SEPTEMBER 2024 12

Small Commercial Plants Mitigate Investment Risk

\$Million IH² Capital Cost

- AACE Class 5 cost estimates
- Optimized case sequesters char and uses sawdust feed

Small Commercial Plants can be Competitive

LCOF \$/gallon for IH² Fuel

Plant Scale

Sensitivity Analysis

All factors varied from 50 to 150% of there standard values

1000t/day- improved

IH² Conclusions/Path Forward

- IH² is a unique, innovative biomass conversion technology which produces high quality liquid product at high yields
- IH² Technology has been successfully demonstrated for over 13,000 hours at GTI Energy at 50kg/day and for months at 5t/day scale
- IH² is H₂ self sufficient
- 200 t/day size good first of a kind approach to lower risk, minimize investment—still modular
- A good way to improve economics—keep reducing capital costs and simplifying system
- Need more detailed 100-200t/d cost estimates
- Available for licensing through GTI Energy

Questions?

Support from US DOE Award DE-EE0008919