HYDROTREATMENT OF WOOD DERIVED BIOCRUDES

Investigation of Possibilities and Challenges Related to Refinery Integration September 12, 2024 Magnus Z. Stummann

PRESENTATION AGENDA

1	LEARNINGS FROM ANALYZING FAST PYROLYSIS OILS
2	A PATHWAY FOR REFINERY INTEGRATING OF HTL OIL
3	TAKE HOME MESSAGE

PRESENTATION AGENDA

1	LEARNINGS FROM ANALYZING FAST PYROLYSIS OILS
2	A PATHWAY FOR REFINERY INTEGRATING OF HTL OIL
3	TAKE HOME MESSAGE

THE IMPACT OF THE BIOMASS COMPOSITION ON HYDROTREATMENT 5 DIFFERENT TYPES OF BIOCRUDES WERE ANALYZED

11 biocrudes produced by fast pyrolysis were analyzed:

- 4 biocrudes were produced from wood
- 1 biocrude was produced from pine bark
- 4 biocrudes were produced from grass
- 1 biocrude was produced from sunflower husk
- 1 biocrude was produced from empty fruit bunches

OXYGEN CONTENT IN BIOCRUDES OXYGEN REMOVAL IS A MAJOR CHALLENGE

- A high hydrogen consumption is needed to selectively remove the oxygen from for these biocrudes.
- The hydrogen consumption for wood derived biocrudes are 2-3 times higher than vegetable oil
- The biocrudes are immiscible with fossil crudes because of the high oxygen content, thus making co-processing of these biocrudes in a hydrotreater challenging.

SULFUR CONTENT IN BIOCRUDES NO BIOCRUDE IS SULFUR FREE

- Wood derived biocrudes have a low sulfur content (~200 wt ppm db)
- The heavy fraction from pyrolysis of grass has the highest sulfur content, but still low compared to many fossil crudes
- All biocrudes contains sulfur, thus the hydrotreating catalyst must be sulfur resistant

IMPURITIES IN BIOCRUDES PRETREATMENT OF BIOCRUDES ARE NECESSARY

- Wood derived biocrudes have the lowest amount of impurities
- Pretreatment is critical to minimize the use of guard catalyst.
- The guard catalyst must be designed to capture a wide range of contaminates

PRESENTATION AGENDA

1	LEARNINGS FROM ANALYZING FAST PYROLYSIS OILS
2	A PATHWAY FOR REFINERY INTEGRATING OF HTL OIL
3	TAKE HOME MESSAGE

HTL OIL PROPERTIES THE HTL OIL HAS A LOW OXYGEN CONTENT, BUT HIGH IMPURITIES CONTENT

	Received HTL Oil		Received HTL Oil
SG	1.076	Cr, wt ppm	48
S, wt ppm	149	Fe, wt ppm	76
N, wt ppm	1479	K, wt ppm	41
H, wt%	8.6	Na, wt ppm	60
O, wt% db	6.3	Si, wt ppm	8
Cl, wt ppm	1.1	Sn, wt ppm	11
Br, wt ppm	0.3	Ti, wt ppm	12
F, wt ppm	2.1	MCR, wt%	24.1

The HTL oil was produced by Aalborg university using their HTL pilot plant

UPGRADING OPTIONS STANDALONE HYDROPROCESSING

STABILIZATION AND MILD UPGRADING OF HTL OIL TEST UNIT AND CONDITIONS

HYDROTREATMENT OF HYDROTHERMAL LIQUEFACTION OIL THE CATALYST DEACTIVATES OVER TIME

MILD CATALYTIC UPGRADING OF HTL OIL NITROGEN IN HTL IS VERY DIFFICULT TO REMOVE

HTL OIL PROPERTIES A SIGNIFICANT DECREASE IN OXYGEN AND MCR AFTER HYDROTREATING

			_		
	Received HTL oil	Pretreated HTL oil		Received HTL oil	Pretreated HTL oil
SG	1.076	0.9916	Cr, wt ppm	48	30
S, wt ppm	149	23	Fe, wt ppm	76	25
N, wt ppm	1479	1047	K, wt ppm	41	10
H, wt%	8.6	10.2	Na, wt ppm	60	20
O, wt% db	6.3	2.4	Si, wt ppm	8	<1
Cl, wt ppm	1.1	0.8	Sn, wt ppm	11	<1
Br, wt ppm	0.3	< 0.2	Ti, wt ppm	12	8
F, wt ppm	2.1	0.4	MCR, wt%	24.1	13.1

STABILIZATION AND MILD UPGRADING OF HTL OIL TEST UNIT AND CONDITIONS

CO-PROCESSING VGO AND PRETREATED HTL OIL

Feed	Α	В	С	
Vol, %	VGO	90%A+10%C	PT HTL product	
SG	0.9258	0.9328	0.9919	
H, wt%	12.20	11.91	10.12	
S, wt ppm	14,435	11,900	23	
N, wt ppm	1409	1370	1047	
O, wt%	0	0.72	2.4	
>370°C, %	84.7	80.3	40.7	100% VGO 90% VGO and 10% HTL

CO-PROCESSING: HYDROCRACKING HYDROPROCESSING OF 100% VGO

CO-PROCESSING: HYDROCRACKING CO-PROCESSING OF PT HTL SIGNIFICANTLY DECREASES THE CATALYST ACTIVITY

IMPACT OF CO-PROCESSING OF HYDROTREATED HTL OIL ON YIELDS AND DENSITY CO-PROCESSING HTL OIL INCREASE THE GAS AND NAPHTHA YIELD AND THE AROMATIC CONTENT

COMPOSITION OF JET FRACTION (160-285°C)

IT IS POSSIBLE TO PRODUCE JET FUEL BY CO-PROCESSING OF WOOD DERIVED BIOCRUDE

	0% HTL	10% HTL	Jet Fuel*
Aromatics	5.2 wt%	19.1 wt%	≤25 vol%
Freezing point	<-80°C	-57°C	≤-40 °C
SG 60/60	0.8138	0.8243	0.775-0.84
Smoke point	Est. 27-28	21.3 mm	≥18 mm

*Based on D7566

Pathway certification is needed

PRESENTATION AGENDA

1	LEARNINGS FROM ANALYZING FAST PYROLYSIS OILS
2	A PATHWAY FOR REFINERY INTEGRATING OF HTL OIL
3	TAKE HOME MESSAGE

TAKE HOME MESSAGE

- It is critical to remove impurities in biocrudes prior to hydrotreating
- HTL oil can be co-processed with VGO, but it requires a preliminary step of mild hydrotreatment.
- A significant increase in temperature is required to maintain the same conversion in the hydrocracker when co-processing mild hydrotreated HTL with VGO.

THANK YOU

Magnus Z. Stummann mazs@topsoe.com

Acknowledgement

Jens Hansen Lived Lemus-Olsen Christian Frederik Weise Erik H. Christensen Lars Jung Nielsen BTG-bioliquids

nnovation Fund Denmark

