

CIRCULAIR

DROP-IN FUELS FROM MANURE AND STRAW H A SCALABLE STRATEGY FOR UPGRADING RAW **BIOCRUDES WITH HIGH SOLID AND OXYGEN CONTENT**

Leah Kristen Rai, Abdenour Achour, Daniele Caste

Department of Energy, Aalborg University , Denmark

Circulair concept

Demineralization process

HTL biocurde challenges

Hydrotreating of biocrude oil

Solvent extraction

Conclusion

CIRCULAIR CONCEPT

CIRCULAIR- Funded by the European union, Duration from the year 2023 - 2026

Objectives:

A cost-effective pathway to produce high-spec jet fuel from HTL biocrudes, enabling full biomass utilization and carbon-negative transportation fuels.

FROM BIOCRUDE TO JET FUEL: MY PHD RESEARCH

STEP I: SOLVENT EXTRACTION

STEP II: DEMINERALIZATION

STEP III: HYDROTREATMENT

- Use of solvents for solid separation
- Acid/Sorbent washings for the removal of inorganics
- Introduction of "multi-step process" to stabilize biocrude
- Application of selective catalyst targeting O and N removal during hydrotreating
- Ensuring minimal carbon loss.

Solvent extraction is crucial for refining HTL biocrude, enhancing its quality and yield.

STEP I- SMALL SCALE SOLVENT EXTRACTION

Soxhlet method: experimental results

• Toluene

CIRCULAIR

HTL Biocrude and solvent ratio (1:5)

Acetone > Ethyl acetate >Toluene

STEP I- LARGE SCALE SOLVENT EXTRACTION

STEP I: INORGANICS BEFORE AND AFTER SOLVENT EXTRACTION

ICP analysis was carried out for raw HTL Biocrude and pretreated biocrude oil

CIRCULAIR

9

STEP II- REMOVAL OF INORGANICS PRETREATED (a) ACIDS DEMINERALIZING BIOCRUDE AGENT **CLEAN BIOCRUDE** (b) SORBENTS OIL DEMINERALIZING AGENT REMOVED

STEP II- REMOVAL OF INORGANICS: EXPERIMENTAL DATA

ACID AND SORBENT WASHING @ 50°C

CIRCULAIR

CONTENTS	ACID WASH	SORBENT WASH
Carbon loss	High	Low
Ash removal	Sulphuric acid (93%)	Alumina (85%)
Necessary optimization needed to lower ash content !!		

11

OIL

STEP III: STABILIZATION OF HIGHLY UNSTABLE OIL

Catalyst-to-Biocrude (1:2)

Excessive Solid Formation

Stabilizes the oil; preventing excess solid formation

STEP III- HYDROTREATED BIOCRUDE: RESULTS

Higher temperature increases the removal of oxygen

Pro A UNIVERSIT

CONCLUSION

- Step 1: Acetone extracted the maximum oil from raw HTL biocrude
- Step 2: Pretreatment for inorganic removal reduced levels from 3000 to 500 ppm via acid wash (0.1 M Sulphuric acid) with 9% carbon loss, while sorbent treatment (alumina spheres) reduced them to 1150 ppm with only 2% carbon loss.
- Step 3: A multi-step approach stabilized the oil during hydrotreatment; high temperature reduced oxygen content significantly (from 20 to 4 wt%) but did not affect nitrogen levels.

FUTURE WORK

- To work on adsorbent for complete removal of inorganics and heteroatoms prior to hydrotreating process
- Introduction of catalyst for the removal of nitrogen from oil at lower temperature

