IOWA STATE UNIVERSITY Bioeconomy Institute

tcbismass 2024

Autothermal Hydrothermal Liquefaction

September 12, 2024

Habeeb Odebiyi, Tannon Daugaard, Jordan Funkhouser, Ryan Smith, Robert Brown

The conversion of organic waste into advanced fuels through Hydrothermal Liquefaction (HTL) is a promising route

- Management of waste has become increasingly difficult with population growth.
- The US alone generates 77.17 MM Tons of wet waste annually, with 41 MM Tons from animal waste having $5.7 \times 10^{11} MJ$ inherent energy content¹.
- HTL can process these wet wastes to produce biofuels.

Hydrothermal Liquefaction (HTL)

- Subcritical: 250 374 °C and 5 22 MPa
- Supercritical: 375 480 °C and 24 34 MPa
- Typical feedstocks: Woody biomass, algae, swine manure, digestate, sewage sludge, food wastes, etc.¹
- HTL uses water as the process medium

Product distribution of HTL of a dry biomass feedstock²

^{1.} Thomsen, L. B. S., Anastasakis, K., & Biller, P. (2022). Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. *Water Research*, 209, 117863.

^{2.} Tews, I. J.; Zhu, Y.; Drennan, C.; Elliott, D. C.; Snowden-Swan, L. J.; Onarheim, K.; Solantausta, Y.; Beckman, D. Biomass Direct Liquefaction Options. TechnoEconomic 3 and Life Cycle Assessment; Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2014.

HTL offers significant advantages over other thermochemical conversion technologies

- The high-pressure condition prevents a phase change, hence avoiding large enthalpic energy requirements
- Biocrude from HTL have improved qualities:
 - Lower oxygen
 - Lower moisture content and
 - Higher heating value (HHV)

HTL/Pyrolysis Liquid Products Comparison

Dimitriadis, A., & Bezergianni, S. (2017). Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. *Renewable and Sustainable Energy Reviews*, 68, 113-125

Major barriers to HTL commercial viability

- 1. D. Lachos-Perez, P. César Torres-Mayanga, E. R. Abaide, G. L. Zabot, and F. De Castilhos, "Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities," *Bioresource Technology*, vol. 343. Elsevier, p. 126084, Jan. 01, 2022. doi: 10.1016/j.biortech.2021.126084.
- 2. D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, "Hydrothermal liquefaction of biomass: Developments from batch to continuous process," *Bioresour. Technol.*, vol. 178, pp. 147–156, 2015, doi: 10.1016/j.biortech.2014.09.132.
- 3. C. Hognon, F. Delrue, and G. Boissonnet, "Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models," *Energy*, vol. 93, pp. 31–40, Dec. 2015, doi: 10.1016/J.ENERGY.2015.09.021.

Autothermal operation could overcome the heat transfer bottleneck of HTL

- Exothermic reaction within reactor provides energy for endothermic HTL reaction
- Demonstrated at Iowa State University for pyrolysis through partial oxidation
 - The valuable heavy ends are preserved
 - Process intensification of three-fold achieved

As the system size increases, the impact of heat transfer limitations becomes more pronounced

For a first-order chemical reaction in a tubular reactor, the diameter D (m) for which heat transfer becomes rate limiting is given by:

$$D > \frac{4h(T_w - T_{rx})}{k_c C_A |\Delta H_{rx}|}$$

Accordingly, the maximum diameter of a tubular HTL reactor is only 0.064 m, illustrating the challenges of heating a commercial-scale HTL reactor

500 Autothermal (A) 450 Conventional (C) 400 throughput 350 throughput autothermal Intensification (I) =throughput conventional 300 250 Relative 200 150 $\frac{A}{C}$ **I** = 100 50 15 20 25 5 10 **Reactor diameter (cm)**

Throughput vs Reactor Size¹

Hypotheses

- The addition of molecular oxygen (as air) decreases external energy demand for HTL
- Oxygen will preferentially react with organic compounds dissolved in aqueous phase compared to water-insoluble fraction (biocrude)

Dissolving oxygen in the aqueous phase

 Mass transfer of oxygen to the aqueous phase will depend on oxygen saturation pressure and effect of mixing on k_La

$$r_m = k_L a (C_{O_2}^* - C_{O_{2,L}})$$

- At typical HTL operating conditions, oxygen is much more soluble in water than at ambient conditions
- Poor solubility of the biocrude fraction in water should protect it against oxidation

 C_{ag} is the molal solubility of oxygen in water¹

Experimental apparatus

Schematic of apparatus

10

Parasitic heat loss was determined to be 0.56 kW

Temperature/Power vs Time – Parasitic Heat Loss

The addition of air leads to a decrease in power requirements for HTL

$$E_{supplied} = \int (P_{HTL} - P_{parasitic}) dt$$

Conclusion/Future Work

- In preliminary experiments, a 9.5% reduction in external energy demand was achieved through the injection of oxygen into the HTL reactor.
 - Equivalence ratio was uncertain due to inadequacies in the measurement of oxygen flow rate
- Future work includes:
 - Improvements in instrumentation to accurately measure equivalence ratio
 - Increase energy supplied via partial oxidation reactions
 - Characterize the products of autothermal HTL and compare to products from conventional HTL

Acknowledgements

- Iowa State University's Bioeconomy Institute
 - Co-authors
 - Staff and students

IOWA STATE UNIVERSITY Bioeconomy Institute

• This work is funded by the U.S. National Science Foundation

