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The conversion of organic waste into advanced fuels through 
Hydrothermal Liquefaction (HTL) is a promising route

• Management of waste has become increasingly 
difficult with population growth.

• The US alone generates 77.17 MM Tons of wet waste 
annually, with 41 MM Tons from animal waste having 
5.7 × 1011𝑀𝑀𝑀𝑀 inherent energy content1.

• HTL can process these wet wastes to produce biofuels.
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1. Biofuels and Bioproducts from wet and gaseous waste streams: challenges and opportunities. US DOE BETO (2017)



Hydrothermal Liquefaction (HTL)

• Subcritical: 250 – 374 °C and 5 – 22 MPa 

• Supercritical: 375 – 480 °C and 24 – 34 MPa

• Typical feedstocks: Woody biomass, algae, 
swine manure, digestate, sewage sludge, 
food wastes, etc. 1

• HTL uses water as the process medium
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1. Thomsen, L. B. S., Anastasakis, K., & Biller, P. (2022). Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. Water Research, 209, 117863. 
2. Tews, I. J.; Zhu, Y.; Drennan, C.; Elliott, D. C.; Snowden-Swan, L. J.; Onarheim, K.; Solantausta, Y.; Beckman, D. Biomass Direct Liquefaction Options. TechnoEconomic 

and Life Cycle Assessment; Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2014.

Product distribution of HTL of a dry 
biomass feedstock2



HTL offers significant advantages over other thermochemical 
conversion technologies

4Dimitriadis, A., & Bezergianni, S. (2017). Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and 
Sustainable Energy Reviews, 68, 113-125
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• The high-pressure condition prevents a 
phase change, hence avoiding large 
enthalpic energy requirements

• Biocrude from HTL have improved 
qualities:
• Lower oxygen
• Lower moisture content and 
• Higher heating value (HHV)

HTL/Pyrolysis Liquid Products Comparison

*daf – dry ash-free basis



Major barriers to HTL commercial viability 
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Char and coke formation1 

High-pressure feeding systems2

Heat and Mass Transfer3

1. D. Lachos-Perez, P. César Torres-Mayanga, E. R. Abaide, G. L. Zabot, and F. De Castilhos, “Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and 
opportunities,” Bioresource Technology, vol. 343. Elsevier, p. 126084, Jan. 01, 2022. doi: 10.1016/j.biortech.2021.126084.

2. D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, “Hydrothermal liquefaction of biomass: Developments from batch to continuous process,” Bioresour. Technol., vol. 178, pp. 
147–156, 2015, doi: 10.1016/j.biortech.2014.09.132.

3.   C. Hognon, F. Delrue, and G. Boissonnet, “Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models,” 
Energy, vol. 93, pp. 31–40, Dec. 2015, doi: 10.1016/J.ENERGY.2015.09.021.



Autothermal operation could overcome the heat transfer 
bottleneck of HTL
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• Exothermic reaction within reactor 
provides energy for endothermic HTL 
reaction

• Demonstrated at Iowa State University 
for pyrolysis through partial oxidation

• The valuable heavy ends are 
preserved

• Process intensification of three-fold 
achieved

Autothermal Reactor System

Sugars



As the system size increases, the impact of heat transfer 
limitations becomes more pronounced 

• For a first-order chemical reaction in a 
tubular reactor, the diameter 𝐷𝐷 𝑚𝑚  for 
which heat transfer becomes rate limiting is 
given by: 

𝐷𝐷 >
4ℎ(𝑇𝑇𝑤𝑤 – 𝑇𝑇𝑟𝑟𝑟𝑟)
𝑘𝑘𝑐𝑐𝐶𝐶𝐴𝐴 ∆𝐻𝐻𝑟𝑟𝑟𝑟

• Accordingly, the maximum diameter of a 
tubular HTL reactor is only 0.064 𝑚𝑚, 
illustrating the challenges of heating a 
commercial-scale HTL reactor

71. R. C. Brown, “Process Intensification through Directly Coupled Autothermal Operation of Chemical Reactors,” Joule, vol. 4, no. 11, pp. 2268–2289, 2020, doi: 
10.1016/j.joule.2020.09.006.
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐼𝐼)  =
𝐼𝐼ℎ𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝐼𝐼 𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝐼𝐼𝑡𝑡𝑚𝑚𝐼𝐼𝑎𝑎
𝐼𝐼ℎ𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎

Throughput vs Reactor Size1



Hypotheses
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• The addition of molecular oxygen (as air) decreases external energy demand for 
HTL

• Oxygen will preferentially react with organic compounds dissolved in aqueous 
phase compared to water-insoluble fraction (biocrude)

Biocrude

Char

Aqueous

Gases

AHTL



Dissolving oxygen in the aqueous phase

• Mass transfer of oxygen to the aqueous 
phase will depend on oxygen saturation 
pressure and effect of mixing on 𝑘𝑘𝐿𝐿𝐼𝐼

𝑡𝑡𝑚𝑚 =  𝑘𝑘𝐿𝐿𝐼𝐼 𝐶𝐶𝑂𝑂2
∗ −  𝐶𝐶𝑂𝑂2,𝐿𝐿  

• At typical HTL operating conditions, 
oxygen is much more soluble in water 
than at ambient conditions

• Poor solubility of the biocrude fraction 
in water should protect it against 
oxidation

91. D. Tromans, “Temperature and pressure dependent solubility of oxygen in water: A thermodynamic analysis,” Hydrometallurgy, vol. 48, no. 3, pp. 327–342, 1998, doi: 
10.1016/s0304-386x(98)00007-3.

Caq is the molal solubility of oxygen in water1 

-73 27 127 227 327 427
Temperature (OC)



Experimental apparatus

10Schematic of apparatus Close-up of autoclave reactor



Parasitic heat loss was determined to be 0.56 𝒌𝒌𝒌𝒌
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The addition of air leads to a decrease in power requirements for 
HTL 
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Air addition
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Power curve describing the enthalpy of HTL

HTL

Parasitic heat loss

Enthalpy of HTL

𝑬𝑬𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = � 𝑷𝑷𝑯𝑯𝑯𝑯𝑯𝑯 −  𝑷𝑷𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑𝒔𝒔𝒔𝒔𝒑𝒑𝒔𝒔𝒑𝒑 𝒔𝒔𝒑𝒑 

9.5% power reduction 
due to oxidation



Conclusion/Future Work 
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• In preliminary experiments, a 9.5% reduction in external energy demand was 
achieved through the injection of oxygen into the HTL reactor.
• Equivalence ratio was uncertain due to inadequacies in the measurement of oxygen flow rate

•  Future work includes:
• Improvements in instrumentation to accurately measure equivalence ratio
• Increase energy supplied via partial oxidation reactions
• Characterize the products of autothermal HTL and compare to products from conventional HTL
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