High yielding conversion of xylose to furfural via boronate esters

Peter van der Wal University of Twente p.j.vanderwal@utwente.nl

PREMEX 2543 Longrau Switzerland

From by-product to platform chemical

Current practice

Realizing low concentrations

"Dissolving water into oil"

Overall process

Choice of chemicals

Boronic acid

- Apolar side group
 - High partition of ester to organic phase
 - Low solubility in water
- High reaction rate in esterification
- Aromatic

Solvent

- Aromatic
- Boiling point above furfural (162 °C)

Extraction experiments

- Measured kinetics and equilibria from 20 to 90 °C
- Higher T favors kinetics and equilibrium
 - >80 % extracted in a few minutes at 90 °C

Extraction model

- CSTR model using measured kinetics and equilibria
- Designed a mixersettler cascade for 90 % xylose recovery
 - Need three stages and 4 minutes
- Need to crystallize NBA out from raffinate

What about real (TC)biomass?

Furfural production experiments

- Successful production of furfural
- Also proven for hydrolysate
- >70 % molar selectivity batch-wise
- Selectivity varies little with temperature

Furfural production model

- Modelled a CSTR
- >90 % selectivity possible
- Construction is ongoing for experimental validation

Conclusion

- State-of-art yield of furfural is low
- Boronate ester improvement
- Proven reactive extraction
- Promising conversion

High yielding conversion of xylose to furfural via boronate esters

Peter van der Wal University of Twente p.j.vanderwal@utwente.nl

What about real (TC)biomass?

	Initial amount (g/L)	Extracted per pass (wt.%)
Xylose	29.83±0.70	87.5±2.3
Glucose	1.97±0.11	39.0±6.4
Arabinose	2.43±0.03	67.4±1.1
Galactose	0.26±0.07	No significant change
Furfural	1.87±0.19	81.5±10.3
5-HMF	0.06±0.02	No significant change
Acetic acid	6.34±0.39	No significant change

20

•
$$K = \frac{c_{[NBA]_2X}^{org}}{c_X^{aq} c_{NBA}^{aq} c_{NBA}^{org}}$$

21

•
$$K = \frac{c_{[NBA]_2X}^{org}}{c_X^{aq} c_{NBA}^{aq} c_{NBA}^{org}}$$

