Ethylbenzene from Polystyrene Waste as Aromatic Additive for SAF

Hong Lu

tcbiomass2024

The International Conference on Thermochemical Conversion Science: Biomass & Municipal Solid Waste to RNG, Biofuels & Chemicals

September 10–12, 2024 | Westin Hotel, Itasca, IL

Background and challenges

- Jet fuel contributed about **14%** of all transportation sector emissions (2022).
- Sustainable Aviation Fuel (SAF) Grand Challenge aims to curb aviation emissions by expanding the production of domestic sustainable aviation fuel to 3 billion gallons per year by 2030 and 100% of projected aviation jet fuel use, or 35 billion gallons per year by 2050.
- Hydrotreated Ester and Fatty Acid (HEFA) lacks aromatics; A minimum of 8 vol. % aromatics required.
- Blending restricted to <50 vol. % by law.
- In reality, most commercial blends are 30/70 blends of Synthetic Paraffinic Kerosene (SPK) and Jet Fuel.

SAF Grand Challenge Roadmap

Image courtesy of https://www.energy.gov/eere/bioenergy/arti cles/sustainable-aviation-fuel-grandchallenge-roadmap-flight-plan-sustainable

Opportunity

• About 2.5 million metric tons polystyrene (#6) produced in the United States in 2019.

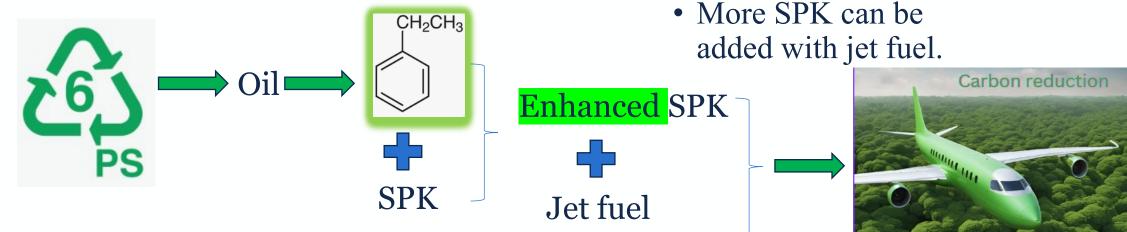
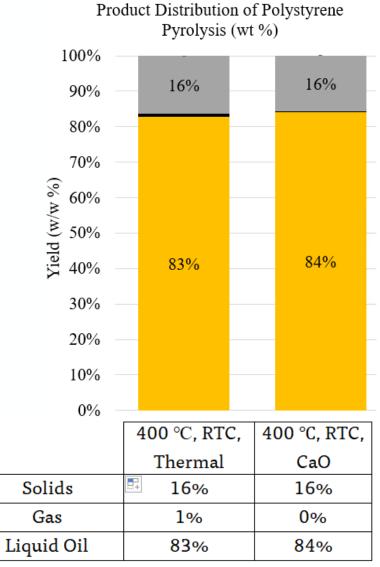


Image generated via canva.com

PS to oil

Product Distribution of Polystyrene Pyrolysis (wt %)



- PS 1200 with and without catalysts compared using 100 g/batch reactor
- PS decomposed readily to produce liquid crude oil products

Waste PS to oil: yield and composition

80% 7% 6% 70% Composition (wt%) 60% 50% 54% 54% 40% 30% 20% 9% 9% 10% 6% 6% 0% Benzene Toluene ■ EthylBenzene Styrene a-MethvlStvrene 400 °C, RTC, 400 °C, RTC, Thermal CaO

Liquid Oil Product Composition of

Polystyrene Pyrolysis

5

PS oil upgradation: hydrogenation with Pd/C

///////////////////////////////////////	///////////////////////////////////////	/////	///////	/////	///////////////////////////////////////	//////	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	//////	//////
Feed	Catalyst	T, P	Benzene	Toluene	Ethylbenzene	Styrene	α-Methyl styrene	1,2-Diphenyl propane	Styrene Dimer	Styrene Trimer	
PS crude oil	(Thermal)	400 °C	0	3	2	57	5	5	13	4	CH=CH ₂
Hydrogenated PS oil	Pd/C	160 °C 60 bar	0	3	55	0	0	6	0	0	
Hydrogenated PS oil	Pd/C	160 °C 60 bar	0	3	57	0	0	6	0	0	

Feed	Catalyst	T, P	Benzene	Toluene	Ethylbenzene	Styrene	α-Methyl styrene	1,2-Diphenyl propane	Styrene Dimer	Styrene Trimer
PS crude oil	(Thermal)	400 °C	0	2	1	55	4	5	15	6
Hydrogenated PS oil	Pd/C	70 °C 55 bar	0	2	53	0	0	0	0	0

• Hydrogenation of styrene to EB: >96% conversion

CH₂CH₃

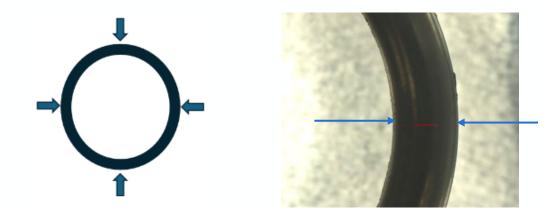
Hydrogenated PS oil: separation of EB

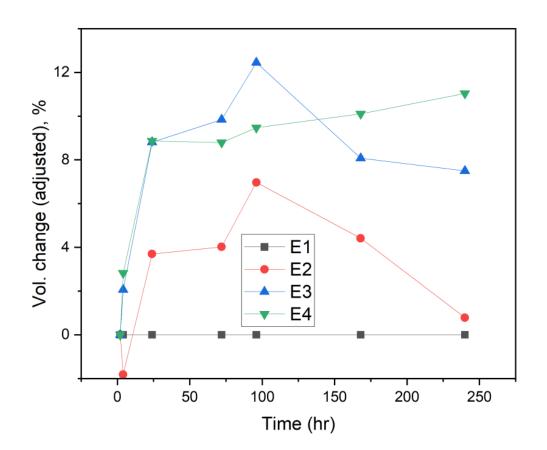
#	Temp (°C)	wt %	Benzene	Toluene	Ethylbenzene	Styrene	α-Methyl styrene	1,2-Diphenyl propane	Styrene Dimer	Styrene Trimer
Hydrogenated PS oil			0	3	49	0	0	8	0	0
Distillate cut (52b)	<131°C	10.5	0	29	64	0	0	0	0	0
Distillate cut (53b)	131- 141°C	43.5	0	3	<mark>89</mark>	0	0	0	0	0
Distillate cut (54b)	>151°C	45.3	0	0	0	0	0	18	0	0

- EB dominated in hydrogenated oil
- High purity EB can be obtained within a T window of 131-141 °C

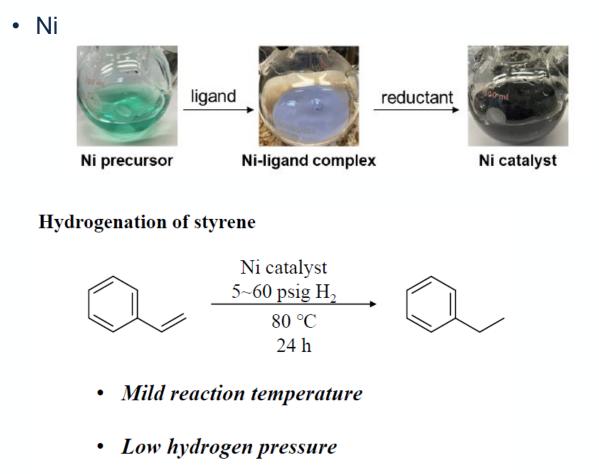
Blending EB with HEFA: property change

- Base fuel: HEFA-SPK (AltAir Paramount Aviation Turbine Fuel, Courtesy of World Energy LLC).
- Property changes within expect with addition of EB.

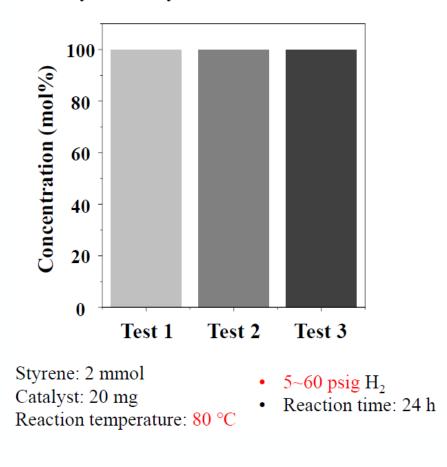

					Density	KV at -		Lubricity		Oxidative	
Description of sample	Additive	FP	AV	Moisture	at 15°C	20°C	KV at 40°C	at 60°C	IP	stability	HHV
Description of sample											
	Vol. %	°C	mg KOH/g	ppm	kg/m ³	mm ² /s	mm ² /s	micron	h	°C	MJ/kg
ASTM D7566-22		< -40	< 0.1		775-840	<8.0		<850			
HEFA	0	-73.7	0.19	49	744	2.88	1.04	582	89.0	199.8	47.2
HEFA w/ Comm. EB	4	-76.0	0.10	33	749	2.61	0.96	709	67.4		47.1
HEFA w/ Comm. EB	8	-76.1	0.10	41	754	2.46	0.93	761	59.7		46.9
HEFA w/ Comm. EB	12	-76.1	0.15	45	758	2.46	0.95	720	66.8		46.7
HEFA w/ Comm. EB	16	-79.2	0.34	27	764	2.19	0.87	775	56.0	202.8	46.5
HEFA w/ PS EB fraction	12	-79.0	0.21	16	759	2.33	0.90	726	/	201.3	46.7
HEFA w/ PS EB fraction	16	-79.1	0.32	21	764	2.16	0.85	721	/	202.6	46.5


8

Blending EB with HEFA: O-ring swelling improvement


 O-ring: Durometer 70A Buna-N (ID ¹/₂", OD 5/8")

Sample #	Additive	Con.
E1	No	
E2	PS EB fraction	12 vol. %
E3	PS EB fraction	16 vol. %
E4	Commercial EB	16 vol. %



Recent findings on hydrogenation

Catalytic activity

Future directions?

- Improvement of hydrogenation
 - Milder conditions
 - Thermal approach
- A package of additives
 - Other components from biomass or waste

Image courtesy of https://ecampusontario.pressbo oks.pub/healthdiseasetopics/ch apter/7-5-future-directions/

• Scale up

Acknowledgements

- U.S. Department of Energy Award No. DE-SC0024038
- Dr. Nalin Kumar (UHV Technologies)
- Dr. Brajendra K. Sharma (USDA ARS-ERRC)
- Dr. Bryan R. Moser (USDA ARS-NCAUR)
- Mr. Ray Schauer (Solid Waste Authority Palm Beach County, Florida)
- Mr. Eliah O. Zaborowski, Dr. Ravindra Prajapati, Dr. Junghyun Park, Dr. Jaemin Kim, Dr. Nandakishore Rajagopalan (UIUC PRI-ISTC)

